Some properties of conformal and quasiconformal mappings and direct theorems of the constructive theory of functions
Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1323-1341

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to an application of the methods of geometric function theory of a single complex variable and some results from the theory of conformal and quasiconformal mappings to a solution of the direct problem of the constructive theory of functions. Direct theorems are obtained for the theory of approximation of functions regular in regions bounded by quasiconformal curves admitting a geometric description. In particular, direct theorems are obtained for arbitrary bounded convex regions.
@article{IM2_1974_8_6_a9,
     author = {V. I. Belyi and V. M. Miklyukov},
     title = {Some properties of conformal and quasiconformal mappings and direct theorems of the constructive theory of functions},
     journal = {Izvestiya. Mathematics },
     pages = {1323--1341},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a9/}
}
TY  - JOUR
AU  - V. I. Belyi
AU  - V. M. Miklyukov
TI  - Some properties of conformal and quasiconformal mappings and direct theorems of the constructive theory of functions
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 1323
EP  - 1341
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a9/
LA  - en
ID  - IM2_1974_8_6_a9
ER  - 
%0 Journal Article
%A V. I. Belyi
%A V. M. Miklyukov
%T Some properties of conformal and quasiconformal mappings and direct theorems of the constructive theory of functions
%J Izvestiya. Mathematics 
%D 1974
%P 1323-1341
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a9/
%G en
%F IM2_1974_8_6_a9
V. I. Belyi; V. M. Miklyukov. Some properties of conformal and quasiconformal mappings and direct theorems of the constructive theory of functions. Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1323-1341. http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a9/