Regular components of homeomorphisms on $n$-dimensional manifolds
Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1305-1322
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the topological type of the regular components of homeomorphisms of compact $n$-dimensional manifolds ($n\geqslant3$, $n\ne4$) is studied. The results obtained are applied to study the connected components of Morse–Smale flows and diffeomorphisms on $n$-dimensional manifolds.
@article{IM2_1974_8_6_a8,
author = {V. S. Medvedev and Ya. L. Umanskii},
title = {Regular components of homeomorphisms on $n$-dimensional manifolds},
journal = {Izvestiya. Mathematics },
pages = {1305--1322},
publisher = {mathdoc},
volume = {8},
number = {6},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a8/}
}
V. S. Medvedev; Ya. L. Umanskii. Regular components of homeomorphisms on $n$-dimensional manifolds. Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1305-1322. http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a8/