Quasi-invariant measures for topological dynamical systems
Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1287-1304
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for a topological dynamical system to admit an ergodic quasi-invariant measure of type III (a measure which is not equivalent to any $\sigma$-finite invariant measure) it is necessary and sufficient that this system have a recurrent point. For systems with a recurrent point, it is shown that there exist a nondenumerable number of pairwise singular ergodic quasi-invariant measures of type III.
@article{IM2_1974_8_6_a7,
author = {I. P. Kornfeld},
title = {Quasi-invariant measures for topological dynamical systems},
journal = {Izvestiya. Mathematics },
pages = {1287--1304},
publisher = {mathdoc},
volume = {8},
number = {6},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a7/}
}
I. P. Kornfeld. Quasi-invariant measures for topological dynamical systems. Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1287-1304. http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a7/