Quasi-invariant measures for topological dynamical systems
Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1287-1304.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for a topological dynamical system to admit an ergodic quasi-invariant measure of type III (a measure which is not equivalent to any $\sigma$-finite invariant measure) it is necessary and sufficient that this system have a recurrent point. For systems with a recurrent point, it is shown that there exist a nondenumerable number of pairwise singular ergodic quasi-invariant measures of type III.
@article{IM2_1974_8_6_a7,
     author = {I. P. Kornfeld},
     title = {Quasi-invariant measures for topological dynamical systems},
     journal = {Izvestiya. Mathematics },
     pages = {1287--1304},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a7/}
}
TY  - JOUR
AU  - I. P. Kornfeld
TI  - Quasi-invariant measures for topological dynamical systems
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 1287
EP  - 1304
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a7/
LA  - en
ID  - IM2_1974_8_6_a7
ER  - 
%0 Journal Article
%A I. P. Kornfeld
%T Quasi-invariant measures for topological dynamical systems
%J Izvestiya. Mathematics 
%D 1974
%P 1287-1304
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a7/
%G en
%F IM2_1974_8_6_a7
I. P. Kornfeld. Quasi-invariant measures for topological dynamical systems. Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1287-1304. http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a7/

[1] Ornstein D. S., “On invariant mesures”, Bull. Amer. Math. Soc., 66:4 (1960), 297–300 | DOI | MR | Zbl

[2] Moore C. C., “Invariant mesures on product spaces”, Proceedings of the Fifth Berkeley symposium on Math. Stat. and Probability, 1965, 447–459 | MR

[3] Keane M., “Sur les mesures quasi-ergodique des translations irrationelles”, Compt. Rend. Acad. Sci., 272:1 (1971), A54–A55 | MR

[4] Krieger W., “On quasi-invariant mesures in uniquely ergodic systems”, Inv. Math., 14 (1971), 184–196 | DOI | MR | Zbl

[5] Katsnelson I., Weiss B., “The construction of quasi-invariant mesures”, Isr. J. Math., 12:1 (1972), 1–4 | DOI | MR

[6] Billingsley P., Convergence of Probability mesures, Wiley, New York, 1968 | MR | Zbl