Recursiveness and $R^c$-operations
Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1209-1224.

Voir la notice de l'article provenant de la source Math-Net.Ru

Relations are established characterizing the connection between recursiveness with respect to consistent functionals and $R^c$-operations known in the theory of sets. It is pointed out that the graph of a functional that is partial recursive with respect to a given consistent functional $F$ can be obtained by a certain (appropriate to $F$) $R^c$-operation. Sets obtained by a given $R^c$-operation over general recursive sets are characterized as semirecursive with respect to a certain (appropriate to this $R^c$-operation) consistent functional.
@article{IM2_1974_8_6_a3,
     author = {V. I. Amstislavskii},
     title = {Recursiveness and $R^c$-operations},
     journal = {Izvestiya. Mathematics },
     pages = {1209--1224},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a3/}
}
TY  - JOUR
AU  - V. I. Amstislavskii
TI  - Recursiveness and $R^c$-operations
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 1209
EP  - 1224
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a3/
LA  - en
ID  - IM2_1974_8_6_a3
ER  - 
%0 Journal Article
%A V. I. Amstislavskii
%T Recursiveness and $R^c$-operations
%J Izvestiya. Mathematics 
%D 1974
%P 1209-1224
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a3/
%G en
%F IM2_1974_8_6_a3
V. I. Amstislavskii. Recursiveness and $R^c$-operations. Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1209-1224. http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a3/

[1] Kleene S. C., “Recursive functionals and quantifiers of finite types, I”, Trans. Amer. Math. Soc., 91 (1959), 1–52 | DOI | MR | Zbl

[2] Platek R. A., Foundations of recursion theory, Dissertation, Stanford university, 1966

[3] Hinman P. G., “Hierarchies of effective descriptive set theory”, Trans. Amer. Math. Soc., 142 (1969), 111–140 | DOI | MR | Zbl

[4] Aczel P., “Representability in some systems of second order arithmetic”, Israel J. Math., 8 (1970), 309–328 | DOI | MR | Zbl

[5] Barwise J., “Applications of strict $\Pi_1^1$ predicates to infinitary logic”, J. Symb. Logic, 34:3 (1960), 409–423 | DOI | MR

[6] Amstislavskii V. I., “Rekursivnost otnositelno funktsionalov i $R^c$-operatsii”, Vtoraya vsesoyuznaya konferentsiya po matem. logike, tezisy kratkikh soobschenii, M., 1972

[7] Kolmogorov A. N., “Ob operatsiyakh nad mnozhestvami”, Matem. sb., 35:3–4 (1928), 415–422 | Zbl

[8] Khausdorf F., Teoriya mnozhestv, M., L., 1937 | Zbl

[9] Amstislavskii V. I., “O sravnenii indeksov, voznikayuschikh pri transfinitnoi iteratsii funktsii”, Sib. Matem. zh., 14:4 (1973), 699–725 | MR | Zbl

[10] Lyapunov A. A., “Ob $R$-mnozhestvakh”, Dokl. AN SSSR, 58:9 (1947), 1887–1890 | MR | Zbl

[11] Lyapunov A. A., “Ob operatsiyakh nad mnozhestvami, dopuskayuschikh transfinitnye indeksy”, Tr. Mosk. matem. ob-va, 6, 1957, 195–230 | MR | Zbl

[12] Amstislavskii V. I., “Effektivnye $R$-mnozhestva i transfinitnye prodolzheniya rekursivnykh ierarkhii”, Fundam. Math., 68:1 (1970), 61–86 | MR | Zbl

[13] Kantorovich L. V., Livenson E. M., “Memoir on the analitical operations and projective sets, II”, Fundam. Math., 20 (1933), 54–97

[14] Kleene S. C., “Extension of an effectively generated class of functions by enumeration”, Colloq. Math., 6 (1958), 67–78 | MR | Zbl

[15] Hinman P. G., “The finite levels of the hierarchy of effective $R$-sets”, Fundam. Math., 79:1 (1973), 1–10 | MR | Zbl