Recursiveness and $R^c$-operations
Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1209-1224

Voir la notice de l'article provenant de la source Math-Net.Ru

Relations are established characterizing the connection between recursiveness with respect to consistent functionals and $R^c$-operations known in the theory of sets. It is pointed out that the graph of a functional that is partial recursive with respect to a given consistent functional $F$ can be obtained by a certain (appropriate to $F$) $R^c$-operation. Sets obtained by a given $R^c$-operation over general recursive sets are characterized as semirecursive with respect to a certain (appropriate to this $R^c$-operation) consistent functional.
@article{IM2_1974_8_6_a3,
     author = {V. I. Amstislavskii},
     title = {Recursiveness and $R^c$-operations},
     journal = {Izvestiya. Mathematics },
     pages = {1209--1224},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a3/}
}
TY  - JOUR
AU  - V. I. Amstislavskii
TI  - Recursiveness and $R^c$-operations
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 1209
EP  - 1224
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a3/
LA  - en
ID  - IM2_1974_8_6_a3
ER  - 
%0 Journal Article
%A V. I. Amstislavskii
%T Recursiveness and $R^c$-operations
%J Izvestiya. Mathematics 
%D 1974
%P 1209-1224
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a3/
%G en
%F IM2_1974_8_6_a3
V. I. Amstislavskii. Recursiveness and $R^c$-operations. Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1209-1224. http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a3/