Intersection theory of divisors on an arithmetic surface
Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1167-1180.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article it is explained how to construct for a nonsingular model of a curve defined over a number field a theory analogous to the theory of divisors, and the intersection numbers of divisors, on a compact algebraic surface.
@article{IM2_1974_8_6_a0,
     author = {S. Yu. Arakelov},
     title = {Intersection theory of divisors on an arithmetic surface},
     journal = {Izvestiya. Mathematics },
     pages = {1167--1180},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a0/}
}
TY  - JOUR
AU  - S. Yu. Arakelov
TI  - Intersection theory of divisors on an arithmetic surface
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 1167
EP  - 1180
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a0/
LA  - en
ID  - IM2_1974_8_6_a0
ER  - 
%0 Journal Article
%A S. Yu. Arakelov
%T Intersection theory of divisors on an arithmetic surface
%J Izvestiya. Mathematics 
%D 1974
%P 1167-1180
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a0/
%G en
%F IM2_1974_8_6_a0
S. Yu. Arakelov. Intersection theory of divisors on an arithmetic surface. Izvestiya. Mathematics , Tome 8 (1974) no. 6, pp. 1167-1180. http://geodesic.mathdoc.fr/item/IM2_1974_8_6_a0/

[1] Shiffer M., Spenser D. K., Funktsionaly na konechnykh rimanovykh poverkhnostyakh, IL, M., 1957