Quantization
Izvestiya. Mathematics , Tome 8 (1974) no. 5, pp. 1109-1165.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we propose a general definition for the quantization of classical mechanics with an arbitrary phase space. We consider the case where the phase space is a complex Kählerian manifold. As an example we consider uniform bounded regions in $C^n$ with a Bergman metric, and also the two-dimensional cylinder and torus.
@article{IM2_1974_8_5_a6,
     author = {F. A. Berezin},
     title = {Quantization},
     journal = {Izvestiya. Mathematics },
     pages = {1109--1165},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/}
}
TY  - JOUR
AU  - F. A. Berezin
TI  - Quantization
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 1109
EP  - 1165
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/
LA  - en
ID  - IM2_1974_8_5_a6
ER  - 
%0 Journal Article
%A F. A. Berezin
%T Quantization
%J Izvestiya. Mathematics 
%D 1974
%P 1109-1165
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/
%G en
%F IM2_1974_8_5_a6
F. A. Berezin. Quantization. Izvestiya. Mathematics , Tome 8 (1974) no. 5, pp. 1109-1165. http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/

[1] Veil G., Teoriya grupp i kvantovaya mekhanika, M., L., 1936

[2] Dirak P. A. M., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[3] Kirillov A. A., Elementy teorii predstavlenii, Nauka, M., 1972 | MR

[4] Konstant B., “Kvantovanie i unitarnye predstavleniya”, Uspekhi matem. nauk, 28:1 (1973), 163–225 | MR

[5] Auslander L., Kostant B., “Quantisation and unitary representations of solvable Lie groups”, Bull. Amer. Math. Soc., 73 (1967), 692–695 | DOI | MR | Zbl

[6] Berezin F. A., “Kvantovanie v ogranichennykh kompleksnykh oblastyakh”, Dokl. AN SSSR, 211:6 (1973), 1263–1266 | MR | Zbl

[7] Berezin F. A., “Neskolko zamechanii ob assotsiativnoi obolochke algebry Li”, Funktsionalnyi analiz i ego prilozhenie, I:2 (1967), 1–14 | MR

[8] Berezin F. A., “Kovariantnye i kontravariantnye simvoly operatorov”, Izv. AN SSSR. Ser. matem., 36 (1972), 1134–1167 | MR | Zbl

[9] Fuks B. A., Teoriya analiticheskikh funktsii neskolkikh kompleksnykh peremennykh, GITTL, M., 1948

[10] Riecz M., “Sur les maxima des formes bilinéares et sur les fonctionnelles linéares”, Acta Math., 49 (1926), 466–497

[11] Sakai S., “$c^*$-algebras and $\omega^*$-algebras”, Proc. Internat. Congr. Math., Nice, 1970

[12] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[13] Berezin F. A., “Vikovskie i antivikovskie simvoly operatorov”, Matem. sb., 86(128):4 (1971), 578–610 | MR

[14] Berezin F. A., Subin M. A., “Symbols of operators and quantisation”, Colloquia Mathematica societatis Janos Bolyai, 5, Hungary, 1970, 21–52 | MR

[15] Berezin F. A., “Ob odnom predstavlenii operatorov s pomoschyu funktsionalov”, Tr. Moskovsk. matem. ob-va, XVIII, 1967, 117–196 | MR

[16] Vok W., “Konfiguratiansraum und zweite Quantelung”, Zs. Phys., 75 (1932), 622–647 | DOI

[17] Vok W., “Zur Quantenelectrodynamik”, Sovet Phys., 6 (1984), 425–440

[18] Bargmann V., “On a Hilbert Space of Analytic Functions”, Comm. Pure and Appl. Math., 3 (1961), 215–228 | MR

[19] Berezin F. A., Minlos R. A., Faddeev L. D., “Kvantovaya mekhanika sistem s bolshim chislom stepenei svobody”, Tr. IV Vsesoyuzn. matem. s'ezda 1961 g., t. II, Nauka, M., 1964, 532–540

[20] von Neumann J., “Die Eindentigkeit der Schrödingerischen Operatoren”, Math. Ann., 104 (1931), 570–578 | DOI | MR | Zbl

[21] Vinberg E. B., Gindikin S. G., Pyatetskii-Shapiro I. I., “O klassifikatsii i kanonicheskoi realizatsii kompleksnykh ogranichennykh odnorodnykh oblastei”, Tr. Mosk. matem. ob-va, 12, 1963, 359–388 | MR | Zbl

[22] Buslaev V. S., Skriganov M. M., “O kharakteristicheskom svoistve veilevskogo kvantovaniya”, Teor. i matem. fizika, 2:3 (1970), 292–295 | MR