Quantization
Izvestiya. Mathematics , Tome 8 (1974) no. 5, pp. 1109-1165

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we propose a general definition for the quantization of classical mechanics with an arbitrary phase space. We consider the case where the phase space is a complex Kählerian manifold. As an example we consider uniform bounded regions in $C^n$ with a Bergman metric, and also the two-dimensional cylinder and torus.
@article{IM2_1974_8_5_a6,
     author = {F. A. Berezin},
     title = {Quantization},
     journal = {Izvestiya. Mathematics },
     pages = {1109--1165},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/}
}
TY  - JOUR
AU  - F. A. Berezin
TI  - Quantization
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 1109
EP  - 1165
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/
LA  - en
ID  - IM2_1974_8_5_a6
ER  - 
%0 Journal Article
%A F. A. Berezin
%T Quantization
%J Izvestiya. Mathematics 
%D 1974
%P 1109-1165
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/
%G en
%F IM2_1974_8_5_a6
F. A. Berezin. Quantization. Izvestiya. Mathematics , Tome 8 (1974) no. 5, pp. 1109-1165. http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/