Quantization
Izvestiya. Mathematics , Tome 8 (1974) no. 5, pp. 1109-1165
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we propose a general definition for the quantization of classical mechanics with an arbitrary phase space. We consider the case where the phase space is a complex Kählerian manifold. As an example we consider uniform bounded regions in $C^n$ with a Bergman metric, and also the two-dimensional cylinder and torus.
@article{IM2_1974_8_5_a6,
author = {F. A. Berezin},
title = {Quantization},
journal = {Izvestiya. Mathematics },
pages = {1109--1165},
publisher = {mathdoc},
volume = {8},
number = {5},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/}
}
F. A. Berezin. Quantization. Izvestiya. Mathematics , Tome 8 (1974) no. 5, pp. 1109-1165. http://geodesic.mathdoc.fr/item/IM2_1974_8_5_a6/