The approximation method for approximating solutions of linear differential equations by algebraic polynomials
Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 937-966
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we propose an effective method for the approximate solution of linear differential equations with polynomial coefficients, for which the coefficient $a_0(x)$ of the highest derivative is different from zero on the segment being considered. The approximating apparatus for the required solution $y(x)$ is provided by a certain sequence of polynomials $y_n(x)$. We prove that for $a_0(x)=\mathrm{const}$ the polynomials so constructed realize the asymptotically best approximation to the function $y(x)$ in the $L^2$ metric with Chebyshev weight, and that in the general case they have the property that
$$
\|y(x)-y_n(x)\|_C\leqslant AE_n(y)_C,\qquad E_n(y)_C=\inf_{c_k}\biggl\|y(x)-\sum_0^nc_kx^k\biggr\|,\quad
A=\mathrm{const}.
$$
@article{IM2_1974_8_4_a7,
author = {V. K. Dzyadyk},
title = {The approximation method for approximating solutions of linear differential equations by algebraic polynomials},
journal = {Izvestiya. Mathematics },
pages = {937--966},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a7/}
}
TY - JOUR AU - V. K. Dzyadyk TI - The approximation method for approximating solutions of linear differential equations by algebraic polynomials JO - Izvestiya. Mathematics PY - 1974 SP - 937 EP - 966 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a7/ LA - en ID - IM2_1974_8_4_a7 ER -
V. K. Dzyadyk. The approximation method for approximating solutions of linear differential equations by algebraic polynomials. Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 937-966. http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a7/