Extension theory for operators and spaces with indefinite metric
Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 895-907.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the classical extension theory for isometric operators cannot be automatically extended to $J$-isometric and $J$-Hermitian operators in $J$-spaces with infinite rank. We construct a single extension theory which includes both the isometric and Hermitian operators in a Hilbert space and the $J$-isometric and $J$-Hermitian operators in a $J$-space with arbitrary indefinite rank. The basis of the construction is a scheme for extension of a neutral subspace of a $J$-space to a maximal or hypermaximal subspace.
@article{IM2_1974_8_4_a5,
     author = {Yu. L. Shmul'yan},
     title = {Extension theory for operators and spaces with indefinite metric},
     journal = {Izvestiya. Mathematics },
     pages = {895--907},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/}
}
TY  - JOUR
AU  - Yu. L. Shmul'yan
TI  - Extension theory for operators and spaces with indefinite metric
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 895
EP  - 907
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/
LA  - en
ID  - IM2_1974_8_4_a5
ER  - 
%0 Journal Article
%A Yu. L. Shmul'yan
%T Extension theory for operators and spaces with indefinite metric
%J Izvestiya. Mathematics 
%D 1974
%P 895-907
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/
%G en
%F IM2_1974_8_4_a5
Yu. L. Shmul'yan. Extension theory for operators and spaces with indefinite metric. Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 895-907. http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/

[1] Iokhvidov I. S., Krein M. G., “Spektralnaya teoriya operatorov v prostranstvakh s indefinitnoi metrikoi, I”, Tr. Mosk. matem. ob-va, 5, 1956, 367–432

[2] Azizov T. Ya., Iokhvidov I. S., “Lineinye operatory v gilbertovykh prostranstvakh s $G$-metrikoi”, Uspekhi matem. nauk, XXVI:4(160) (1971), 43–92 | MR

[3] Iokhvidov I. S., “Ob ogranichennosti $J$-izometricheskikh operatorov”, Uspekhi matem. nauk, XVI:4(100) (1961), 167–170

[4] Krein M. G., Shmulyan Yu. L., “$J$-polyarnoe predstavlenie plyus-operatorov”, Matem. issled., 1, 2, Kishinev, 1966, 172–210 | MR | Zbl

[5] Ginzburg Yu. P., “O podprostranstvakh gilbertova prostranstva s indefinitnoi metrikoi”, Nauch. zap. Odesskogo ped. in-ta, 25, no. 2, 1961, 3–9

[6] Phillips R. S., “Dissipative operators and hyperbolic systems of partial differential equations”, Trans. Amer. Math. Soc., 90:2 (1959), 193–254 ; Matematika, 6:4 (1962), 11–70 | DOI | MR | Zbl

[7] Krein M. G., “Vvedenie v geometriyu indefinitnykh $J$-prostranstv i teoriyu operatorov v etikh prostranstvakh”, Vtoraya letn. matem. shkola, 1, Naukova dumka, Kiev, 1965, 15–92 | MR

[8] Ginzburg Yu. P., Iokhvidov I. S., “Issledovanie po geometrii beskonechnomernykh prostranstv s bilineinoi metrikoi”, Uspekhi matem. nauk, XVII (1962), 3–56 | MR

[9] Bennevitz Ch., “Symmetric relations on a Hilbert space”, Lect. Notes Math., 280, 1972, 212–218 | MR

[10] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[11] Krasnoselskii M. A., “O samosopryazhennykh rasshireniyakh ermitovykh operatorov”, Ukr. matem. zh., 1 (1949), 21–38 | MR

[12] Arens R., “Operational calculus of linear relations”, Pacif. J. Math., 11 (1961), 9–23 | MR | Zbl

[13] Shmulyan Yu. L., “Regulyarnye i singulyarnye ermitovy operatory”, Matem. zametki, 8:2 (1970), 197–203

[14] Iokhvidov I. S., “$G$-izometricheskie i $J$-poluunitarnye operatory v gilbertovom prostranstve”, Uspekhi matem. nauk, XX:3(123) (1965), 175–181

[15] Iokhvidov I. S., “O singulyarnykh linealakh v prostranstvakh $\Pi_\varkappa$”, Ukr. matem. zh., 16:3 (1964), 300–309

[16] Coddington E. A., Extension theory of formally normal and symmetric subspaces, Mem. Amer. Math. Soc., 134, 1973 | MR | Zbl