Extension theory for operators and spaces with indefinite metric
Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 895-907

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the classical extension theory for isometric operators cannot be automatically extended to $J$-isometric and $J$-Hermitian operators in $J$-spaces with infinite rank. We construct a single extension theory which includes both the isometric and Hermitian operators in a Hilbert space and the $J$-isometric and $J$-Hermitian operators in a $J$-space with arbitrary indefinite rank. The basis of the construction is a scheme for extension of a neutral subspace of a $J$-space to a maximal or hypermaximal subspace.
@article{IM2_1974_8_4_a5,
     author = {Yu. L. Shmul'yan},
     title = {Extension theory for operators and spaces with indefinite metric},
     journal = {Izvestiya. Mathematics },
     pages = {895--907},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/}
}
TY  - JOUR
AU  - Yu. L. Shmul'yan
TI  - Extension theory for operators and spaces with indefinite metric
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 895
EP  - 907
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/
LA  - en
ID  - IM2_1974_8_4_a5
ER  - 
%0 Journal Article
%A Yu. L. Shmul'yan
%T Extension theory for operators and spaces with indefinite metric
%J Izvestiya. Mathematics 
%D 1974
%P 895-907
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/
%G en
%F IM2_1974_8_4_a5
Yu. L. Shmul'yan. Extension theory for operators and spaces with indefinite metric. Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 895-907. http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/