Extension theory for operators and spaces with indefinite metric
Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 895-907
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the classical extension theory for isometric operators cannot be automatically extended to $J$-isometric and $J$-Hermitian operators in $J$-spaces with infinite rank. We construct a single extension theory which includes both the isometric and Hermitian operators in a Hilbert space and the $J$-isometric and $J$-Hermitian operators in a $J$-space with arbitrary indefinite rank. The basis of the construction is a scheme for extension of a neutral subspace of a $J$-space to a maximal or hypermaximal subspace.
@article{IM2_1974_8_4_a5,
author = {Yu. L. Shmul'yan},
title = {Extension theory for operators and spaces with indefinite metric},
journal = {Izvestiya. Mathematics },
pages = {895--907},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/}
}
Yu. L. Shmul'yan. Extension theory for operators and spaces with indefinite metric. Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 895-907. http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a5/