Irreducible representations of~infinite-dimensional Lie algebras of Cartan type
Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 836-866
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the irreducible representations of infinite-dimensional filtered Lie algebras are studied. The concept of the height of a representation is introduced, and it is proved that the representations of height greater than one of the Lie algebras $\mathbf W_n$, $\mathbf S_n$, $\mathbf H_n$ and $\mathbf K_n$ are induced. The representations of height one of the algebras $\mathbf W_n$ are also described.
@article{IM2_1974_8_4_a3,
author = {A. N. Rudakov},
title = {Irreducible representations of~infinite-dimensional {Lie} algebras of {Cartan} type},
journal = {Izvestiya. Mathematics },
pages = {836--866},
publisher = {mathdoc},
volume = {8},
number = {4},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a3/}
}
A. N. Rudakov. Irreducible representations of~infinite-dimensional Lie algebras of Cartan type. Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 836-866. http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a3/