Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated
Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 801-835.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main results of this article are: 1) the classification of those finite-dimensional filtered Lie algebras over fields of prime characteristic whose associated graded Lie algebras are Lie algebras of Cartan type; 2) a description of the infinite-dimensional primitive transitive subalgebras of Lie algebras of linear differential operators with coefficients in a subring of the ring of formal power series over a field of characteristic zero.
@article{IM2_1974_8_4_a2,
     author = {V. G. Kac},
     title = {Description of filtered {Lie} algebras with which graded {Lie} algebras of {Cartan} type are associated},
     journal = {Izvestiya. Mathematics },
     pages = {801--835},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a2/}
}
TY  - JOUR
AU  - V. G. Kac
TI  - Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 801
EP  - 835
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a2/
LA  - en
ID  - IM2_1974_8_4_a2
ER  - 
%0 Journal Article
%A V. G. Kac
%T Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated
%J Izvestiya. Mathematics 
%D 1974
%P 801-835
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a2/
%G en
%F IM2_1974_8_4_a2
V. G. Kac. Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated. Izvestiya. Mathematics , Tome 8 (1974) no. 4, pp. 801-835. http://geodesic.mathdoc.fr/item/IM2_1974_8_4_a2/

[1] Veisfeiler B. Yu., “Beskonechnomernye filtrovannye algebry Li i ikh svyaz s graduirovannymi algebrami Li”, Funkts. analiz i ego prilozheniya, 2:1 (1968), 94–95 | MR | Zbl

[2] Veisfeiler B. Yu., Kats V. G., “Eksponentsialy v algebrakh Li kharakteristiki $p$”, Izv. AN SSSR. Ser. matem., 35 (1971), 762–788 | MR | Zbl

[3] Giiemin V., Shternberg Sh., “Algebraicheskaya model tranzitivnoi differentsialnoi geometrii”, Matematika, 10:4 (1966), 3–31

[4] Kats V. G., “O klassifikatsii prostykh algebr Li nad polem s nenulevoi kharakteristikoi”, Izv. AN SSSR. Ser. matem., 34 (1970), 385–408 | Zbl

[5] Kats V. G., “Globalnye psevdogruppy Kartana i prostye algebry Li kharakteristike $p$”, Uspekhi matem. nauk, XXVI:3(159) (1971), 199–200

[6] Kostrikin A. I., Shafarevich I. R., “Graduirovannye algebry Li konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 33 (1969), 251–322 | MR | Zbl

[7] Kostrikin A. I., “Kvadraty prisoedinennykh endomorfizmov v prostykh $p$-algebrakh Li”, Izv. AN SSSR. Ser. matem., 31 (1967), 445–487 | MR | Zbl

[8] Kreknin V. A., “Suschestvovanie maksimalnoi invariantnoi podalgebry v prostykh algebrakh Li kartanovskogo tipa”, Matem. zametki, 9:2 (1971), 211–222 | MR | Zbl

[9] Klein F., Vysshaya geometriya, GONTI, M., 1939

[10] Blattner R. J., “Induced and produced representations of Lie algebras”, Trans. Amer. Math. Soc., 144 (1969), 457–474 | DOI | MR

[11] Hayashi I., “Embedding and existence theorems of infinite Lie algebra”, J. Math. Soc. Japan, 1970, no. 1, 1–14 | MR | Zbl

[12] Ree R., “On generalized Witt algebras”, Trans. Amer. Math. Soc., 83 (1956), 510–546 | DOI | MR | Zbl

[13] Wilson R. L., “Nonclassical simple Lie algebras”, Bull. Amer. Math. Soc., 75:5 (1969), 987–991 | DOI | MR | Zbl

[14] Wilson R. L., “Classification of generalized Witt algebras over algebraically closed fields”, Trans. Amer. Math. Soc., 153 (1971), 191–210 | DOI | MR | Zbl

[15] Zassenhaus H., “The representations of Lie algebras of prime characteristic”, Proc. Glasgow Math. Assoc., 2 (1954), 1–36 | DOI | MR | Zbl