On the best quadrature formula of the form $\sum_{k=1}^np_kf(x_k)$ for some classes of differentiable periodic functions
Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 591-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the problem of the best quadrature formula of the form $\sum_{k=1}^np_kf(x_k)$ for the following classes of differentiable periodic functions: $W^r$ ($r>3$), $W^rH_\omega$ (where $\omega$ is a convex modulus of continuity and $r$ is odd), and $W^rL$ ($r=4,6,\dots$).
@article{IM2_1974_8_3_a8,
     author = {V. P. Motornyi},
     title = {On the best quadrature formula of the form $\sum_{k=1}^np_kf(x_k)$ for some classes of differentiable periodic functions},
     journal = {Izvestiya. Mathematics },
     pages = {591--620},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a8/}
}
TY  - JOUR
AU  - V. P. Motornyi
TI  - On the best quadrature formula of the form $\sum_{k=1}^np_kf(x_k)$ for some classes of differentiable periodic functions
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 591
EP  - 620
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a8/
LA  - en
ID  - IM2_1974_8_3_a8
ER  - 
%0 Journal Article
%A V. P. Motornyi
%T On the best quadrature formula of the form $\sum_{k=1}^np_kf(x_k)$ for some classes of differentiable periodic functions
%J Izvestiya. Mathematics 
%D 1974
%P 591-620
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a8/
%G en
%F IM2_1974_8_3_a8
V. P. Motornyi. On the best quadrature formula of the form $\sum_{k=1}^np_kf(x_k)$ for some classes of differentiable periodic functions. Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 591-620. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a8/

[1] Nikolskii S. M., Kvadraturnye formuly, Fizmatgiz, M., 1958

[2] Nikolskii S. M., “K voprosu ob otsenkakh priblizhenii kvadraturnymi formulami”, Uspekhi matem. nauk, 5:2(36) (1950), 165–177 | MR

[3] Doronin G. Ya., “K voprosu o formulakh mekhanicheskikh kvadratur”, Sbornik nauchnykh trudov Dnepropetrovskogo inzhenerno-stroitelnogo instituta, no. 1,2, 1955, 210–217

[4] Shaidaeva T. A., “Kvadraturnye formuly s naimenshei otsenkoi ostatka dlya nekotorykh klassov funktsii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 53, 1959, 313–341 | Zbl

[5] Ibragimov I. I., Aliev R. M., “Nailuchshie kvadraturnye formuly dlya nekotorykh klassov funktsii”, Dokl. AN SSSR, 162:1 (1965), 23–25 | MR | Zbl

[6] Aksen M. B., Turetskii R. M., “Nailuchshie kvadraturnye formuly dlya nekotorykh klassov funktsii”, Dokl. AN SSSR, 166:5 (1966), 1010–1021 | MR

[7] Lushpai N. E., “Nailuchshie kvadraturnye formuly dlya nekotorykh klassov funktsii”, Izv. vuzov, matem., 1969, no. 12, 53–59

[8] Lushpai N. E., “Nailuchshie kvadraturnye formuly na klassakh differentsiruemykh periodicheskikh funktsii”, Matem. zametki, 6:4 (1969), 475–481 | MR | Zbl

[9] Krylov V. I., Priblizhennoe vychislenie integralov, Nauka, M., 1967 | MR

[10] Korneichuk N. P., “Nailuchshie kubaturnye formuly dlya nekotorykh klassov funktsii mnogikh peremennykh”, Matem. zametki, 3:5 (1968), 565–576

[11] Korneichuk N. P., Lushpai N. E., “Nailuchshie kvadraturnye formuly dlya klassov differentsiruemykh funktsii i kusochnopolinomialnoe priblizhenie”, Izv. AN SSSR. Ser. matem., 33 (1969), 1416–1437

[12] Levin M. I., “Ekstremalnye zadachi dlya kvadraturnykh formul na nekotorykh mnozhestvakh funktsii”, Izv. AN ESSR, Fiz. Matem., 19:4 (1970), 407–413

[13] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, IL, M., 1972

[14] Busarova T. N., “Kvadratury s naimenshei otsenkoi ostatka dlya odnogo klassa periodicheskikh funktsii”, Issledovaniya po sovremennym problemam summirovaniya i priblizheniya funktsii i ikh prilozheniyam, Dnepropetrovsk, 1972, 16–18 | MR

[15] Aleksandrov P. S., Kombinatornaya topologiya, Gostekhizdat, M., L., 1947 | MR

[16] Malozemov V. N., “O tochnosti kvadraturnoi formuly pryamougolnikov dlya periodicheskikh funktsii”, Matem. zametki, 2:4 (1967), 357–360 | MR | Zbl

[17] Malozemov V. N., “Otsenka tochnosti odnoi kvadraturnoi formuly dlya periodicheskikh funktsii”, Vestnik Leningr. un-ta, 1967, no. 1, 52–59 | MR | Zbl

[18] Korneichuk N. P., O nailuchshem ravnomernom priblizhenii nepreryvnykh funktsii, Avtoreferat dokt. dissertatsii, Dnepropetrovsk, 1963

[19] Korneichuk N. P., “Ekstremalnye znacheniya funktsionalov i nailuchshee priblizhenie na klassakh periodicheskikh funktsii”, Izv. AN SSSR. Seriya matem., 35 (1971), 93–124

[20] Korneichuk N. P., “Neravenstva dlya differentsiruemykh periodicheskikh funktsii i nailuchshee priblizhenie odnogo klassa funktsii drugim”, Izv. AN SSSR. Seriya matem., 36 (1972), 423–434

[21] Stein E. M., “Function of exponential type”, Ann. Math., 65:3 (1957), 582–592 | DOI | MR | Zbl

[22] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh proizvolnoi funktsii na beskonechnom intervale”, Uch. zap. MGU, no. 30, 1939, 3–13, Matematika, 3

[23] Nikolskii S. M., “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Seriya matem., 10 (1946), 207–256

[24] Motornyi V. P., “Ob odnom neravenstve dlya modulei gladkosti periodicheskoi funktsii s ogranichennoi proizvodnoi”, Dokl. AN SSSR, 154 (1964), 45–47 | MR | Zbl

[25] Subbotin Yu. N., “Priblizhenie “splain”-funktsiyami i otsenki poperechnikov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 109, 1971, 35–60 | MR | Zbl

[26] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948