Existence of smooth ergodic flows on smooth manifolds
Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 525-552

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that on any compact, connected, smooth manifold of dimension greater than two there exist smooth flows preserving a given measure with smooth positive density and ergodic with respect to it. (The smoothness is everywhere of infinite order.)
@article{IM2_1974_8_3_a6,
     author = {D. V. Anosov},
     title = {Existence of smooth ergodic flows on smooth manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {525--552},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a6/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - Existence of smooth ergodic flows on smooth manifolds
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 525
EP  - 552
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a6/
LA  - en
ID  - IM2_1974_8_3_a6
ER  - 
%0 Journal Article
%A D. V. Anosov
%T Existence of smooth ergodic flows on smooth manifolds
%J Izvestiya. Mathematics 
%D 1974
%P 525-552
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a6/
%G en
%F IM2_1974_8_3_a6
D. V. Anosov. Existence of smooth ergodic flows on smooth manifolds. Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 525-552. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a6/