Existence of smooth ergodic flows on smooth manifolds
Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 525-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that on any compact, connected, smooth manifold of dimension greater than two there exist smooth flows preserving a given measure with smooth positive density and ergodic with respect to it. (The smoothness is everywhere of infinite order.)
@article{IM2_1974_8_3_a6,
     author = {D. V. Anosov},
     title = {Existence of smooth ergodic flows on smooth manifolds},
     journal = {Izvestiya. Mathematics },
     pages = {525--552},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a6/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - Existence of smooth ergodic flows on smooth manifolds
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 525
EP  - 552
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a6/
LA  - en
ID  - IM2_1974_8_3_a6
ER  - 
%0 Journal Article
%A D. V. Anosov
%T Existence of smooth ergodic flows on smooth manifolds
%J Izvestiya. Mathematics 
%D 1974
%P 525-552
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a6/
%G en
%F IM2_1974_8_3_a6
D. V. Anosov. Existence of smooth ergodic flows on smooth manifolds. Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 525-552. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a6/

[1] Anosov D. V., Katok A. B., “Novye primery ergodicheskikh diffeomorfizmov gladkikh mnogoobrazii”, Uspekhi matem. nauk, 25:4 (1970), 173–174 | MR | Zbl

[2] Anosov D. V., Katok A. B., “Novye primery v gladkoi ergodicheskoi teorii. Ergodicheskie diffeomorfizmy”, Tr. Mosk. Matem. ob-va, 23, 1970, 3–36 | MR | Zbl

[3] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, Uspekhi matem. nauk, 22:5 (1967), 81–106 | MR | Zbl

[4] Abramov L. M., “Ob entropii potoka”, Dokl. AN SSSR, 128:5 (1959), 873–876 | MR

[5] Morse M., “The existence of polar non-degenerate functions on differentiable manifolds”, Ann. Math., 71:2 (1960), 352–383 | DOI | MR | Zbl

[6] Milnor Dzh., Teorema ob $h$-kobordizme, Mir, M., 1969 | MR

[7] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968 | MR

[8] Moser J., “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl

[9] Krygin A. B., “Prodolzhenie diffeomorfizmov, sokhranyayuschikh ob'em”, Funkts. analiz i ego prilozheniya, 5:2 (1971), 72–76 | MR | Zbl

[10] Khalmosh P., Teoriya mery, IL, M., 1953