Orbits of the group $\mathbf{GL}(r,k[X_1,\dots,X_n])$
Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 490-500

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown that the study of projective metabelian Lie algebras of finite rank reduces to a partial solution of Serre's problem on projective modules over polynomial rings. It is also observed that projective commutative-associative algebras of dimension 1 are isomorphic to the ring of polynomials in one variable over the ground field.
@article{IM2_1974_8_3_a3,
     author = {V. A. Artamonov},
     title = {Orbits of the group $\mathbf{GL}(r,k[X_1,\dots,X_n])$},
     journal = {Izvestiya. Mathematics },
     pages = {490--500},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a3/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - Orbits of the group $\mathbf{GL}(r,k[X_1,\dots,X_n])$
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 490
EP  - 500
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a3/
LA  - en
ID  - IM2_1974_8_3_a3
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T Orbits of the group $\mathbf{GL}(r,k[X_1,\dots,X_n])$
%J Izvestiya. Mathematics 
%D 1974
%P 490-500
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a3/
%G en
%F IM2_1974_8_3_a3
V. A. Artamonov. Orbits of the group $\mathbf{GL}(r,k[X_1,\dots,X_n])$. Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 490-500. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a3/