Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity
Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 631-666

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop a new asymptotic method for pseudodifferential operators in the case of characteristics of variable multiplicity; the $N$th term of the asymptotics is expressed in terms of an $N$-dimensional integral of a rapidly oscillating function of $(N+n)$ arguments, where $n$ is the dimension of the space ($x=x_1,\dots,x_n$).
@article{IM2_1974_8_3_a10,
     author = {V. V. Kucherenko},
     title = {Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity},
     journal = {Izvestiya. Mathematics },
     pages = {631--666},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/}
}
TY  - JOUR
AU  - V. V. Kucherenko
TI  - Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 631
EP  - 666
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/
LA  - en
ID  - IM2_1974_8_3_a10
ER  - 
%0 Journal Article
%A V. V. Kucherenko
%T Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity
%J Izvestiya. Mathematics 
%D 1974
%P 631-666
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/
%G en
%F IM2_1974_8_3_a10
V. V. Kucherenko. Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity. Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 631-666. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/