Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity
Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 631-666
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we develop a new asymptotic method for pseudodifferential operators in the case of characteristics of variable multiplicity; the $N$th term of the asymptotics is expressed in terms of an $N$-dimensional integral of a rapidly oscillating function of $(N+n)$ arguments, where $n$ is the dimension of the space ($x=x_1,\dots,x_n$).
@article{IM2_1974_8_3_a10,
author = {V. V. Kucherenko},
title = {Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity},
journal = {Izvestiya. Mathematics },
pages = {631--666},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/}
}
TY - JOUR
AU - V. V. Kucherenko
TI - Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity
JO - Izvestiya. Mathematics
PY - 1974
SP - 631
EP - 666
VL - 8
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/
LA - en
ID - IM2_1974_8_3_a10
ER -
%0 Journal Article
%A V. V. Kucherenko
%T Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity
%J Izvestiya. Mathematics
%D 1974
%P 631-666
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/
%G en
%F IM2_1974_8_3_a10
V. V. Kucherenko. Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity. Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 631-666. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/