Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity
Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 631-666.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop a new asymptotic method for pseudodifferential operators in the case of characteristics of variable multiplicity; the $N$th term of the asymptotics is expressed in terms of an $N$-dimensional integral of a rapidly oscillating function of $(N+n)$ arguments, where $n$ is the dimension of the space ($x=x_1,\dots,x_n$).
@article{IM2_1974_8_3_a10,
     author = {V. V. Kucherenko},
     title = {Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity},
     journal = {Izvestiya. Mathematics },
     pages = {631--666},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/}
}
TY  - JOUR
AU  - V. V. Kucherenko
TI  - Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 631
EP  - 666
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/
LA  - en
ID  - IM2_1974_8_3_a10
ER  - 
%0 Journal Article
%A V. V. Kucherenko
%T Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity
%J Izvestiya. Mathematics 
%D 1974
%P 631-666
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/
%G en
%F IM2_1974_8_3_a10
V. V. Kucherenko. Asymptotics of the solution of the system $A(x,-ih\frac\partial{\partial x})$ as~$h\to0$ in the case of characteristics of variable multiplicity. Izvestiya. Mathematics , Tome 8 (1974) no. 3, pp. 631-666. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a10/

[1] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965

[2] Kucherenko V. V., “Uravnenie Gamiltona–Yakobi v kompleksnoi neanaliticheskoi situatsii”, Dokl. AN SSSR, 213:5 (1973), 1021–1025

[3] Kucherenko V. V., “Kanonicheskii operator Maslova na rostke kompleksnogo pochti analiticheskogo mnogoobraziya”, Dokl. AN SSSR, 213:6 (1973), 1251–1254 | MR | Zbl

[4] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[5] Sternin B. Yu., “Kanonicheskii operator v kompleksnoi situatsii”, Uspekhi matem. nauk, 29:1 (1974), 187–188 | MR | Zbl

[6] Ludwig G., Granoff B., “Propagation of singlarities along characteristics with nonuniform multiplicity”, J. Math. Anal. Appl., 21:3 (1968), 556–574 | DOI | MR | Zbl

[7] Kravtsov Yu. A., ““Kvaziizotropnoe” priblizhenie geometricheskoi optiki”, Dokl. AN SSSR, 183:1 (1968), 74–76

[8] Bykhovskii V. K., Nikitin E. E., Ovchinnikova M. Ya., ZhETF, 47:2 (1964), 750–756

[9] Lere Zh., Gording L., Kotake T., Zadacha Koshi, Mir, M., 1967

[10] Kurant R., Uravneniya v chastnykh proizvodnykh, Mir, M., 1964

[11] Maslov V. P., Fedoryuk M. V., “Kanonicheskii operator (Veschestvennyi sluchai)”, Sovremennye problemy matematiki, 1, VINITI, 1973, 85–168

[12] Arnold V. I., Lektsii po klassicheskoi mekhanike, MGU, M., 1970 | MR

[13] Kucherenko V. V., “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika, dlya statsionarnogo uravneniya Shredingera”, Teoreticheskaya i matematicheskaya fizika, 1:3 (1969), 384–406 | MR

[14] Fedoryuk M. V., “Metod statsionarnoi fazy i psevdodifferentsialnye operatory”, Uspekhi matem. nauk, XXVI:1 (1971), 67–112