A remark on endomorphisms of abelian varieties over function fields of finite characteristic
Izvestiya. Mathematics, Tome 8 (1974) no. 3, pp. 477-480
Cet article a éte moissonné depuis la source Math-Net.Ru
Assuming Tate's finiteness conjecture, we prove some consequences of Tate's conjecture on homomorphisms of abelian varieties.
@article{IM2_1974_8_3_a1,
author = {Yu. G. Zarhin},
title = {A~remark on endomorphisms of abelian varieties over function fields of finite characteristic},
journal = {Izvestiya. Mathematics},
pages = {477--480},
year = {1974},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a1/}
}
Yu. G. Zarhin. A remark on endomorphisms of abelian varieties over function fields of finite characteristic. Izvestiya. Mathematics, Tome 8 (1974) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a1/
[1] Zarkhin Yu. G., “Teorema konechnosti dlya izogenii abelevykh mnogoobrazii nad funktsionalnymi polyami konechnoi kharakteristiki”, Funktsionalnyi analiz i ego prilozheniya, 8:4 (1974), 31–34 | MR | Zbl
[2] Tate J., “Algebraic cycles and poles of Zeta-functions”, Arithmetical algebraic geometry, New York, 1965, 93–110 | MR | Zbl
[3] Tate J., “Endomorphisms of abelian varieties over finite fields”, Inv. Math., 2 (1966), 134–144 ; Matematika, 12:6 (1968), 31–46 | DOI | MR | Zbl
[4] Parshin A. N., “Minimalnye modeli krivykh roda 2 i gomomorfizmy abelevykh mnogoobrazii, opredelennykh nad polem konechnoi kharakteristiki”, Izv. AN SSSR. Ser. matem., 36 (1972), 67–109 | Zbl