On Tate height and the representation of numbers by binary forms
Izvestiya. Mathematics, Tome 8 (1974) no. 3, pp. 463-476
Cet article a éte moissonné depuis la source Math-Net.Ru
We give a decomposition of the Tate height into components possessing quadraticity with respect to a group law, and on the basis of this decomposition we obtain an estimate for the number of $K$-points with integral coordinates of certain algebraic curves.
@article{IM2_1974_8_3_a0,
author = {V. A. Dem'yanenko},
title = {On {Tate} height and the representation of numbers by binary forms},
journal = {Izvestiya. Mathematics},
pages = {463--476},
year = {1974},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a0/}
}
V. A. Dem'yanenko. On Tate height and the representation of numbers by binary forms. Izvestiya. Mathematics, Tome 8 (1974) no. 3, pp. 463-476. http://geodesic.mathdoc.fr/item/IM2_1974_8_3_a0/
[1] Baker A., “Linear forms in the logarithms of algebraic numbers”, Mathematika, 13 (1966), 204–216 | MR | Zbl
[2] Demyanenko V. A., “Ratsionalnye tochki odnogo klassa algebraicheskikh krivykh”, Izv. AN SSSR. Ser. matem., 30 (1966), 1373–1396
[3] Demyanenko V. A., “O kruchenii ellipticheskikh krivykh”, Izv. AN SSSR, Ser. matem., 35 (1971), 280–307
[4] Demyanenko V. A., “Otsenka ostatochnogo chlena v formule Teita”, Matem. zametki, 3 (1968), 271–278
[5] Demyanenko V. A., “O ravnomernoi ogranichennosti krucheniya ellipticheskikh krivykh nad algebraicheskimi chislovymi polyami”, Izv. AN SSSR. Ser. matem., 36 (1972), 484–496
[6] Demyanenko V. A., “O predstavlenii chisel binarnymi bikvadratichnymi formami”, Matem. sb., 80(122) (1969), 445–452