An equation of convolution type in tube domains of~$\mathbf C^2$
Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 452-462
Voir la notice de l'article provenant de la source Math-Net.Ru
This article considers a homogeneous equation of convolution type on tube domains of $\mathbf C^2$. A proof is given that every solution of this equation can be approximated in the topology of uniform convergence on compact sets by linear combinations of exponential polynomials satisfying the same equation.
@article{IM2_1974_8_2_a9,
author = {V. V. Napalkov},
title = {An equation of convolution type in tube domains of~$\mathbf C^2$},
journal = {Izvestiya. Mathematics },
pages = {452--462},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a9/}
}
V. V. Napalkov. An equation of convolution type in tube domains of~$\mathbf C^2$. Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 452-462. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a9/