An equation of convolution type in tube domains of $\mathbf C^2$
Izvestiya. Mathematics, Tome 8 (1974) no. 2, pp. 452-462 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article considers a homogeneous equation of convolution type on tube domains of $\mathbf C^2$. A proof is given that every solution of this equation can be approximated in the topology of uniform convergence on compact sets by linear combinations of exponential polynomials satisfying the same equation.
@article{IM2_1974_8_2_a9,
     author = {V. V. Napalkov},
     title = {An equation of convolution type in tube domains of~$\mathbf C^2$},
     journal = {Izvestiya. Mathematics},
     pages = {452--462},
     year = {1974},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a9/}
}
TY  - JOUR
AU  - V. V. Napalkov
TI  - An equation of convolution type in tube domains of $\mathbf C^2$
JO  - Izvestiya. Mathematics
PY  - 1974
SP  - 452
EP  - 462
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a9/
LA  - en
ID  - IM2_1974_8_2_a9
ER  - 
%0 Journal Article
%A V. V. Napalkov
%T An equation of convolution type in tube domains of $\mathbf C^2$
%J Izvestiya. Mathematics
%D 1974
%P 452-462
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a9/
%G en
%F IM2_1974_8_2_a9
V. V. Napalkov. An equation of convolution type in tube domains of $\mathbf C^2$. Izvestiya. Mathematics, Tome 8 (1974) no. 2, pp. 452-462. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a9/

[1] Napalkov V. V., “O podprostranstvakh analiticheskikh funktsii, invariantnykh otnositelno sdviga”, Izv. AN SSSR. Ser. matem., 36 (1972), 1269–1281 | MR | Zbl

[2] Krasichkov I. F., “Odnorodnoe uravnenie tipa svertki na vypuklykh oblastyakh”, Dokl. AN SSSR, 197:1 (1971), 29–31 | Zbl

[3] Leontev A. F., “O summirovanii ryada Dirikhle s kompleksnymi pokazatelyami i ego primenenii”, Tr. Matem. in-ta im. V. A.Steklova AN SSSR, CXII, 1971, 300–326 | MR

[4] Malgrange B., “Existence et approximation des solution des equations aux derivees partielles et des equations de convolution”, Ann. Inst. Fourier, 6 (1955), 271–354 | MR

[5] Ehrenpreis L., “Mean periodic functions”, Amer. J. Math., 77:2 (1955), 293–328 | DOI | MR | Zbl

[6] Martineau A., “Equations differentielles d'ordre infini”, Bull. Soc. Math. France, 95 (1967), 109–154 | MR | Zbl

[7] Khermander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[8] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[9] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstvakh $(F)$ i $(LF)$”, Matematika, 2:2 (1958), 77–107

[10] Leontev A. F., “O predstavlenii funktsii posledovatelnosti polinomov Dirikhle”, Matem. sb., 70(112) (1966), 132–144 | MR

[11] Musoyan V. X., O predstavlenii funktsii ryadami $\Sigma c_kf(\lambda_kz)$, Dissertatsiya, M., 1966

[12] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[13] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR