Some properties of anisotropic Calder\'on--Zygmund classes
Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 436-451.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article introduces the function classes $T_{a_s,\varkappa}^{p,\lambda}(G)$ and $t_{a_s,\varkappa}^{p,\lambda}(G)$ which are analogues of the classes $T_u^p(x_0)$ and $t_u^p(x_0)$ of Calderón and Zygmund [1], [2] for the anisotropic case. Some properties of functions in these classes are studied.
@article{IM2_1974_8_2_a8,
     author = {A. A. Akhmetzhanov},
     title = {Some properties of anisotropic {Calder\'on--Zygmund} classes},
     journal = {Izvestiya. Mathematics },
     pages = {436--451},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a8/}
}
TY  - JOUR
AU  - A. A. Akhmetzhanov
TI  - Some properties of anisotropic Calder\'on--Zygmund classes
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 436
EP  - 451
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a8/
LA  - en
ID  - IM2_1974_8_2_a8
ER  - 
%0 Journal Article
%A A. A. Akhmetzhanov
%T Some properties of anisotropic Calder\'on--Zygmund classes
%J Izvestiya. Mathematics 
%D 1974
%P 436-451
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a8/
%G en
%F IM2_1974_8_2_a8
A. A. Akhmetzhanov. Some properties of anisotropic Calder\'on--Zygmund classes. Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 436-451. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a8/

[1] Calderon A. P., Zygmund A., “Local properties of solutions of elliptic partial differential equations”, Studia Mathematica, XX:2 (1961), 171–225 | MR

[2] Calderon A. P., Zygmund A. A., “Note on local properties of solutions of elliptic ditterential equations”, Proceedings of the National Academy of sciences of the United States of America, 86 (1960), 1385–1389 | DOI | MR

[3] Besov O. V., Ilin V. P., “Estestvennoe rasshirenie klassa oblastei v teoremakh vlozheniya”, Matem. sb., 75:4 (1968), 483–495 | MR | Zbl

[4] Ilin V. P., “Ob odnom klasse funktsii mnogikh deistvitelnykh peremennykh”, Zap. nauchnykh seminarov LOMI AN SSSR, 5, 1967, 110–168 | MR

[5] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR