Uniqueness classes for the solution of Goursat's problem
Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 423-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

Uniqueness classes for the solution of Goursat's problem, which consists in giving Cauchy initial conditions for each of the variables $t_i$, $ i=1,\dots,n$, are studied for linear partial differential equations with constant coefficients with two groups of variables: time $t=(t_1,\dots,t_n)$ and space $x=(x_1,\dots,x_m)$. The results obtained generalize a well-known theorem of Gel'fand and Shilov on uniqueness classes for the solution of Cauchy's problem.
@article{IM2_1974_8_2_a7,
     author = {V. M. Borok},
     title = {Uniqueness classes for the solution of {Goursat's} problem},
     journal = {Izvestiya. Mathematics },
     pages = {423--435},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a7/}
}
TY  - JOUR
AU  - V. M. Borok
TI  - Uniqueness classes for the solution of Goursat's problem
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 423
EP  - 435
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a7/
LA  - en
ID  - IM2_1974_8_2_a7
ER  - 
%0 Journal Article
%A V. M. Borok
%T Uniqueness classes for the solution of Goursat's problem
%J Izvestiya. Mathematics 
%D 1974
%P 423-435
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a7/
%G en
%F IM2_1974_8_2_a7
V. M. Borok. Uniqueness classes for the solution of Goursat's problem. Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 423-435. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a7/

[1] Vladimirov V. S., Drozhzhinov Yu. N., “Obobschennaya zadacha Koshi dlya ultraparabolicheskogo uravneniya”, Izv. AN SSSR. Ser. matem., 31 (1967), 1341–1360 | Zbl

[2] Volevich L. R., Gindikin S. G., “Zadacha dlya plyuriparabolicheskikh uravnenii, I”, Matem. sb., 75:1 (1968), 64–105 | MR | Zbl

[3] Fridlender V. R., Khamitov L. X., “Obobschennaya zadacha Daffa–Fridmana”, Matematika, Izvestiya vuzov, 1967, no. 5, 101–107 | MR | Zbl

[4] Persson Jan, “The functions classes $\gamma_H(\beta,\delta,d)$ and global linear Goursat problems”, Ann. Scuola Norm. Sup. Pisa (3), 24:4 (1970), 663–639 | MR

[5] Gelfand I. M., Shilov G. E., “Preobrazovaniya Fure bystro rastuschikh funktsii i voprosy edinstvennosti resheniya zadachi Koshi”, Uspekhi matem. nauk, 8:6(58) (1953), 3–54 | MR | Zbl

[6] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Prostranstva osnovnykh i obobschennykh funktsii, vyp. 2, Fizmatgiz, M., 1958 | MR

[7] Borok V. M., “Privedenie sistemy lineinykh uravnenii v chastnykh proizvodnykh s postoyannymi koeffitsientami k kanonicheskomu vidu”, Dokl. AN SSSR, 115:1 (1957), 13–16 | MR | Zbl

[8] Chebotarev N. G., Teoriya algebraicheskikh funktsii, Gostekhizdat, M., L., 1948

[9] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955

[10] Zolotarev G. N., “Ob otsenkakh sverkhu klassov edinstvennosti resheniya zadachi Koshi dlya sistem differentsialnykh uravnenii v chastnykh proizvedeniyakh”, Nauchnye doklady vyssh. shkoly, 1958, no. 2 | MR