Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles
Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 301-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct models of finite-dimensional linear and projective irreducible representations of a connected semisimple group $G$ in linear systems on the variety $G$. We establish an algebro-geometric criterion for the linearizability of an irreducible projective representation of $G$. We explain the algebro-geometric meaning of the numerical characteristic of an arbitrary rational character of a maximal torus of $G$. Using these results we compute the Picard group of an arbitrary homogeneous space of any connected linear algebraic group $H$, prove the homogeneity of an arbitrary one-dimensional algebraic vector bundle over such a space relative to some covering group of $H$, and compute the Chern class of such a bundle.
@article{IM2_1974_8_2_a3,
     author = {V. L. Popov},
     title = {Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles},
     journal = {Izvestiya. Mathematics },
     pages = {301--327},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a3/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 301
EP  - 327
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a3/
LA  - en
ID  - IM2_1974_8_2_a3
ER  - 
%0 Journal Article
%A V. L. Popov
%T Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles
%J Izvestiya. Mathematics 
%D 1974
%P 301-327
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a3/
%G en
%F IM2_1974_8_2_a3
V. L. Popov. Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles. Izvestiya. Mathematics , Tome 8 (1974) no. 2, pp. 301-327. http://geodesic.mathdoc.fr/item/IM2_1974_8_2_a3/

[1] Popov V. L., “Gruppy Pikara odnorodnykh prostranstv lineinykh algebraicheskikh grupp i odnomernye odnorodnye vektornye rassloeniya”, Uspekhi matem. nauk, XXVII:4 (1972), 191–192

[2] Classification des groupes de Lie algebriques, 1956–1958, Ecole Normale Superieure, Seminaire C. Chevalley, 1–24, Secretariat Mathematique, Paris, 1958

[3] Voskresenskii V. E., “Gruppy Pikara lineinykh algebraicheskikh grupp”, Issledovaniya po teorii chisel, no. 3, Saratovskogo un-t, 1969, 7–16 | MR | Zbl

[4] Iversen B., The characteristic map for a reductive algebraic group, Prepr. Ser. 1, Mat. Inst. Aarhus Universitet, 1972/73, July

[5] Miyanishy M., “On the algebraic fundamental group of the algebraic group”, J. Math. Kyoto Univ., 12:2 (1972), 351–367 | MR

[6] Rosenlicht M., “Toroidal algebraic groups”, Proc. Am. Math. Soc., 12 (1961), 984 | DOI | MR | Zbl

[7] Rosenlicht M., “Some rationality questions on algebraic groups”, Ann. Math., 43 (1957), 25–50 | MR | Zbl

[8] Rosenlicht M., “Another proof of a theorem on rational cross-section”, Pacific J. Math., 20:1 (1967), 129–133 | MR | Zbl

[9] Vinberg E. B., Onischik A. L., Seminar po algebraicheskim gruppam i gruppam Li, MGU, mekh.-mat., M., 1968

[10] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[11] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR

[12] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[13] Hirzebruch F., Topological methods in algebraic geometry, Springer-Verlag, Berlin, 1966 | MR

[14] Mumford D., Geometric invariant theory, Springer-Verlag, Berlin, 1965 | MR | Zbl

[15] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[16] Bialynicky-Birula A., “On homogeneous affine spaces of linear algebraic groups”, Am. J. Math., 85 (1963), 577 | MR

[17] Chzhen Shen-shen, Kompleksnye mnogoobraziya, IL, M., 1961

[18] Akhiezer D. N., “O kogomologiyakh kompaktnykh kompleksnykh odnorodnykh prostranstv”, Matem. sb., 84(126):2 (1971), 290–300 | Zbl

[19] Griffiths P. A., “Some geometric and analytic properties of homogeneous complex manifolds, I”, Acta Math., 110:1,2 (1963), 115–155 | DOI | MR | Zbl

[20] Sérre J.-P., “On the fundamental group of a unirational variety”, J. Lond. Math. Soc., 34:4 (1959), 481–487 | DOI | MR

[21] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 749–764 | MR | Zbl

[22] Kholl M., Teoriya grupp, IL, M., 1962