Complex Tauberian theorems for the one-sided and two-sided Stieltjes transform
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 145-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove one-sided and two-sided complex Tauberian theorems for the Stieltjes transform. Tauberian theorems of the type of Keldysh theorem [1] with a remainder for the one-sided Stieltjes transform in the real domain were studied in [2]–[5]. Theorems of such type in the complex domain have not been studied in detail. Here only one result [6], [7] for the one-sided case is known.
@article{IM2_1974_8_1_a8,
     author = {M. A. Subkhankulov and F. I. An},
     title = {Complex {Tauberian} theorems for the one-sided and two-sided {Stieltjes} transform},
     journal = {Izvestiya. Mathematics },
     pages = {145--176},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a8/}
}
TY  - JOUR
AU  - M. A. Subkhankulov
AU  - F. I. An
TI  - Complex Tauberian theorems for the one-sided and two-sided Stieltjes transform
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 145
EP  - 176
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a8/
LA  - en
ID  - IM2_1974_8_1_a8
ER  - 
%0 Journal Article
%A M. A. Subkhankulov
%A F. I. An
%T Complex Tauberian theorems for the one-sided and two-sided Stieltjes transform
%J Izvestiya. Mathematics 
%D 1974
%P 145-176
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a8/
%G en
%F IM2_1974_8_1_a8
M. A. Subkhankulov; F. I. An. Complex Tauberian theorems for the one-sided and two-sided Stieltjes transform. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 145-176. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a8/

[1] Keldysh M. V., “Ob odnoi tauberovoi teoreme”, Tr. Matem. in-ta im. V. A.Steklova AN SSSR, 38, 1951, 77–86 | Zbl

[2] Vuckovic V., “Quelques theorems relativs a la transformation de Stieltjes”, Publ. de l'Institut Math. Acad. Serbe, 6 (1954), 63–74 | MR | Zbl

[3] Subkhankulov M. A., “Ostatochnyi chlen v tauberovoi teoreme Khardi–Littlvuda–Karlemana”, Izv. AN SSSR. Ser. mat., 25:6 (1961), 925–934 | MR | Zbl

[4] Subkhankulov M. A., “Nekotorye obschie tauberovy teoremy s ostatochnym chlenom”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 64, 1961, 239–266

[5] Ganelius T., “Tauberian theorems for the Stiltjes transform”, Math. Scand., 14 (1964), 213–219 | MR | Zbl

[6] Malliavin P., “Un theoreme tauberian avec reste la transformee de Stieltijes”, Comptes Rendus de l'Academ. Sciences, Paris, 255 (1962), 2351–2352 | MR | Zbl

[7] Pleijel A., “On a theorem by P. Malliavin”, Israel J. Math., 1 (1963), 166–168 | DOI | MR | Zbl

[8] Gradshtein I. S., Ryzhik I. M., Tablitsa integralov, summ ryadov i proizvedenii, Fizmatgiz, M., 1962