On the representation by Dirichlet series of analytic functions in a closed convex polygonal region
Izvestiya. Mathematics, Tome 8 (1974) no. 1, pp. 133-144
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\overline D$ be a closed convex polygonal region. It is shown that, for any function $f(z)$ analytic in the open region $D$ and continuous together with its first derivative in $\overline D$, a Dirichlet series can be constructed (its exponents depend only on $D$) that converges to $f(z)$ everywhere in $\overline D$ except, possibly, at its vertices.
@article{IM2_1974_8_1_a7,
author = {A. F. Leont'ev},
title = {On the representation by {Dirichlet} series of analytic functions in a~closed convex polygonal region},
journal = {Izvestiya. Mathematics},
pages = {133--144},
year = {1974},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a7/}
}
A. F. Leont'ev. On the representation by Dirichlet series of analytic functions in a closed convex polygonal region. Izvestiya. Mathematics, Tome 8 (1974) no. 1, pp. 133-144. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a7/
[1] Leontev A. F., “O predstavlenii analiticheskikh funktsii v zamknutoi vypukloi oblasti ryadami Dirikhle”, Izv. AN SSSR. Ser. matem., 37 (1973), 577–592 | MR
[2] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956
[3] Gelfond A. O., “O polnote sistem analiticheskikh funktsii”, Matem. sb., 4(46) (1938), 149–156 | Zbl