Compact complex homogeneous spaces with solvable fundamental group
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 61-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, complex Lie groups $G$ acting transitively and effectively on complex manifolds $X$ with solvable (nilpotent) fundamental groups are studied. It is shown that if $\pi_1(X)$ is nilpotent, then locally $G=S\times N$, where $S$ is semisimple and $N$ is nilpotent. In the case when $\pi_1(X)$ is solvable, the Levi decomposition of the group $G$ is direct if and only if the stationary subgroup contains a maximal unipotent subgroup of the semisimple part. The question of the existence of transitive semisimple groups on $X$ is considered.
@article{IM2_1974_8_1_a4,
     author = {D. N. Akhiezer},
     title = {Compact complex homogeneous spaces with solvable fundamental group},
     journal = {Izvestiya. Mathematics },
     pages = {61--83},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a4/}
}
TY  - JOUR
AU  - D. N. Akhiezer
TI  - Compact complex homogeneous spaces with solvable fundamental group
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 61
EP  - 83
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a4/
LA  - en
ID  - IM2_1974_8_1_a4
ER  - 
%0 Journal Article
%A D. N. Akhiezer
%T Compact complex homogeneous spaces with solvable fundamental group
%J Izvestiya. Mathematics 
%D 1974
%P 61-83
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a4/
%G en
%F IM2_1974_8_1_a4
D. N. Akhiezer. Compact complex homogeneous spaces with solvable fundamental group. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 61-83. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a4/

[1] Barth W., Otte M., “Über fast-uniforme Untergruppen komplexer Liegruppen und auflósbare komplexe Mannigfaltigketiten”, Comm. Math. Helv., 44:3 (1969), 269–281 | DOI | MR | Zbl

[2] Gorbatsevich V. V., “Diskretnye podgruppy razreshimykh grupp Li tipa (E)”, Matem. sb., 85(127):2 (1971), 238–255 | Zbl

[3] Vinberg E. B., Onischik A. L., Seminar po algebraicheskim gruppam i gruppam Li, MGU, 1969

[4] Akhiezer D. N., “O kogomologiyakh kompaktnykh kompleksnykh odnorodnykh prostranstv”, Matem. sb., 84(126):2 (1971), 290–300 | Zbl

[5] Tits J., “Espaces homogènes complexes compacts”, Comm. Math. Helv., 37:2 (1962), 111–12 | DOI | MR

[6] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | MR | Zbl

[7] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1964 | MR

[8] Atiyah M., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85:1 (1957), 181–207 | DOI | MR | Zbl

[9] Onischik A. L., “Otnosheniya vklyucheniya mezhdu tranzitivnymi kompaktnymi gruppami preobrazovanii”, Tr. MMO, 11, 1962, 199–242 | Zbl

[10] Hermann R., “Compactification of homogeneous spaces, I”, J. Math. and Mech., 14:4 (1965), 655–678 | MR | Zbl

[11] Akhiezer D. N., “O kogomologiyakh kompaktnykh kompleksnykh odnorodnykh prostranstv, II”, Matem. sb., 87(129):4 (1972), 587–593 | MR

[12] Griffiths P. A., “Some geometric and analytic properties of homogeneous complex manifolds”, Acta Math., 110:2 (1963), 155–208 | Zbl

[13] Ise M., “On the geometry of Hopf manifolds”, Osaka Math. J., 12:2 (1960), 387–402 | MR | Zbl

[14] Bott R., “Homogeneous vector bundles”, Ann. Math., 66:2 (1957), 203–248 | DOI | MR | Zbl

[15] Algebraicheskaya teoriya chisel, Sb. perevodov, Mir, M., 1969 | MR

[16] Wang H. C., “Closed manifolds with homogeneous complex structures”, Amer. J. Math., 76:1 (1954), 1–32 | DOI | MR | Zbl

[17] Mostow G. D., “On the fundamental group of a homogeneous space”, Ann. Math., 66:2 (1957), 249–255 | DOI | MR | Zbl

[18] Onischik A. L., “O tranzitivnykh kompaktnykh gruppakh preobrazovanii”, Matem. sb., 60(102):4 (1963), 447–485 | Zbl

[19] Akhiezer D. N., “Kompleksnye kompaktnye odnorodnye prostranstva s razreshimoi fundamentalnoi gruppoi”, Uspekhi matem. nauk, 28:3 (1973), 167–168 | MR | Zbl