Compact complex homogeneous spaces with solvable fundamental group
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 61-83

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, complex Lie groups $G$ acting transitively and effectively on complex manifolds $X$ with solvable (nilpotent) fundamental groups are studied. It is shown that if $\pi_1(X)$ is nilpotent, then locally $G=S\times N$, where $S$ is semisimple and $N$ is nilpotent. In the case when $\pi_1(X)$ is solvable, the Levi decomposition of the group $G$ is direct if and only if the stationary subgroup contains a maximal unipotent subgroup of the semisimple part. The question of the existence of transitive semisimple groups on $X$ is considered.
@article{IM2_1974_8_1_a4,
     author = {D. N. Akhiezer},
     title = {Compact complex homogeneous spaces with solvable fundamental group},
     journal = {Izvestiya. Mathematics },
     pages = {61--83},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a4/}
}
TY  - JOUR
AU  - D. N. Akhiezer
TI  - Compact complex homogeneous spaces with solvable fundamental group
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 61
EP  - 83
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a4/
LA  - en
ID  - IM2_1974_8_1_a4
ER  - 
%0 Journal Article
%A D. N. Akhiezer
%T Compact complex homogeneous spaces with solvable fundamental group
%J Izvestiya. Mathematics 
%D 1974
%P 61-83
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a4/
%G en
%F IM2_1974_8_1_a4
D. N. Akhiezer. Compact complex homogeneous spaces with solvable fundamental group. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 61-83. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a4/