Examples of nonhomogeneous quasihomogeneous surfaces
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 43-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Over a field of arbitrary positive characteristic we construct a nonsingular affine surface $X$ which is quasihomogeneous but not homogeneous. More precisely, we find generators of the group of automorphisms of this surface and show that there exists a point $\xi\in X$ which is invariant under all the automorphisms of $X$, while $\operatorname{Aut}(X)$ acts transitively on the points of $X-\xi$.
@article{IM2_1974_8_1_a3,
     author = {M. Kh. Gizatullin and V. I. Danilov},
     title = {Examples of nonhomogeneous quasihomogeneous surfaces},
     journal = {Izvestiya. Mathematics },
     pages = {43--60},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a3/}
}
TY  - JOUR
AU  - M. Kh. Gizatullin
AU  - V. I. Danilov
TI  - Examples of nonhomogeneous quasihomogeneous surfaces
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 43
EP  - 60
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a3/
LA  - en
ID  - IM2_1974_8_1_a3
ER  - 
%0 Journal Article
%A M. Kh. Gizatullin
%A V. I. Danilov
%T Examples of nonhomogeneous quasihomogeneous surfaces
%J Izvestiya. Mathematics 
%D 1974
%P 43-60
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a3/
%G en
%F IM2_1974_8_1_a3
M. Kh. Gizatullin; V. I. Danilov. Examples of nonhomogeneous quasihomogeneous surfaces. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a3/

[1] Gizatullin M. X., “Ob affinnykh poverkhnostyakh, popolnyaemykh neosoboi ratsionalnoi krivoi”, Izv. AN SSSR. Ser. matem., 34 (1970), 778–802 | MR | Zbl

[2] Gizatullin M. X., “Invarianty nepolnykh algebraicheskikh poverkhnostei, poluchaemye s pomoschyu popolnenii”, Izv. AN SSSR. Ser. matem., 35 (1971), 485–497 | MR | Zbl

[3] Gizatullin M. X., “Kvaziodnorodnye affinnye poverkhnosti”, Izv. AN SSSR. Ser. matem., 35 (1971), 1047–1071 | MR | Zbl

[4] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl