Examples of nonhomogeneous quasihomogeneous surfaces
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 43-60
Voir la notice de l'article provenant de la source Math-Net.Ru
Over a field of arbitrary positive characteristic we construct a nonsingular affine surface $X$ which is quasihomogeneous but not homogeneous. More precisely, we find generators of the group of automorphisms of this surface and show that there exists a point $\xi\in X$ which is invariant under all the automorphisms of $X$, while $\operatorname{Aut}(X)$ acts transitively on the points of $X-\xi$.
@article{IM2_1974_8_1_a3,
author = {M. Kh. Gizatullin and V. I. Danilov},
title = {Examples of nonhomogeneous quasihomogeneous surfaces},
journal = {Izvestiya. Mathematics },
pages = {43--60},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a3/}
}
M. Kh. Gizatullin; V. I. Danilov. Examples of nonhomogeneous quasihomogeneous surfaces. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a3/