Examples of nonhomogeneous quasihomogeneous surfaces
Izvestiya. Mathematics, Tome 8 (1974) no. 1, pp. 43-60
Cet article a éte moissonné depuis la source Math-Net.Ru
Over a field of arbitrary positive characteristic we construct a nonsingular affine surface $X$ which is quasihomogeneous but not homogeneous. More precisely, we find generators of the group of automorphisms of this surface and show that there exists a point $\xi\in X$ which is invariant under all the automorphisms of $X$, while $\operatorname{Aut}(X)$ acts transitively on the points of $X-\xi$.
@article{IM2_1974_8_1_a3,
author = {M. Kh. Gizatullin and V. I. Danilov},
title = {Examples of nonhomogeneous quasihomogeneous surfaces},
journal = {Izvestiya. Mathematics},
pages = {43--60},
year = {1974},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a3/}
}
M. Kh. Gizatullin; V. I. Danilov. Examples of nonhomogeneous quasihomogeneous surfaces. Izvestiya. Mathematics, Tome 8 (1974) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a3/
[1] Gizatullin M. X., “Ob affinnykh poverkhnostyakh, popolnyaemykh neosoboi ratsionalnoi krivoi”, Izv. AN SSSR. Ser. matem., 34 (1970), 778–802 | MR | Zbl
[2] Gizatullin M. X., “Invarianty nepolnykh algebraicheskikh poverkhnostei, poluchaemye s pomoschyu popolnenii”, Izv. AN SSSR. Ser. matem., 35 (1971), 485–497 | MR | Zbl
[3] Gizatullin M. X., “Kvaziodnorodnye affinnye poverkhnosti”, Izv. AN SSSR. Ser. matem., 35 (1971), 1047–1071 | MR | Zbl
[4] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl