An analogue of the Torelli theorem for Kummer surfaces of Jacobians
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 21-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain algebraic criteria that isolate the class of Kummer surfaces of Jacobians of curves of genus 2 within the class of $K3$ surfaces. In addition, we prove analogues of Torelli's theorems for these surfaces and find a “standard” representation for them as a complete intersection of three quadrics in $\mathbf P^5$.
@article{IM2_1974_8_1_a2,
     author = {V. V. Nikulin},
     title = {An analogue of the {Torelli} theorem for {Kummer} surfaces of {Jacobians}},
     journal = {Izvestiya. Mathematics },
     pages = {21--41},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a2/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - An analogue of the Torelli theorem for Kummer surfaces of Jacobians
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 21
EP  - 41
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a2/
LA  - en
ID  - IM2_1974_8_1_a2
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T An analogue of the Torelli theorem for Kummer surfaces of Jacobians
%J Izvestiya. Mathematics 
%D 1974
%P 21-41
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a2/
%G en
%F IM2_1974_8_1_a2
V. V. Nikulin. An analogue of the Torelli theorem for Kummer surfaces of Jacobians. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 21-41. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a2/

[1] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. matem., 35 (1971), 530–572

[2] Neron A., Modeles $p$-minimaux des variétes abeliens, Seminaire Bourbaki, 227, 1961–1962 | Zbl

[3] Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, 1965 | MR | Zbl

[4] Shokurov V. V., “Teorema Nëtera–Enrikvesa o kanonicheskikh krivykh”, Matem. sb., 86:3 (1971), 367–408 | Zbl

[5] Saint-Donat B., Projectiv Models of $k$-3 Surfaces, preprint, Cambridge Mass., 1972 | MR

[6] Hudson M. A., Kummer's quartic surface, University Press, Cambridge, 1905 | Zbl

[7] Coble A. B., Algebraic geometry and theta functions, Colloquium publ., 10, Amer. Math. Soc., New York, 1929 | MR | Zbl