Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1974_8_1_a2, author = {V. V. Nikulin}, title = {An analogue of the {Torelli} theorem for {Kummer} surfaces of {Jacobians}}, journal = {Izvestiya. Mathematics }, pages = {21--41}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {1974}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a2/} }
V. V. Nikulin. An analogue of the Torelli theorem for Kummer surfaces of Jacobians. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 21-41. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a2/
[1] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. matem., 35 (1971), 530–572
[2] Neron A., Modeles $p$-minimaux des variétes abeliens, Seminaire Bourbaki, 227, 1961–1962 | Zbl
[3] Algebraicheskie poverkhnosti, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 75, 1965 | MR | Zbl
[4] Shokurov V. V., “Teorema Nëtera–Enrikvesa o kanonicheskikh krivykh”, Matem. sb., 86:3 (1971), 367–408 | Zbl
[5] Saint-Donat B., Projectiv Models of $k$-3 Surfaces, preprint, Cambridge Mass., 1972 | MR
[6] Hudson M. A., Kummer's quartic surface, University Press, Cambridge, 1905 | Zbl
[7] Coble A. B., Algebraic geometry and theta functions, Colloquium publ., 10, Amer. Math. Soc., New York, 1929 | MR | Zbl