An analogue of the Torelli theorem for Kummer surfaces of Jacobians
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 21-41
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we obtain algebraic criteria that isolate the class of Kummer surfaces of Jacobians of curves of genus 2 within the class of $K3$ surfaces. In addition, we prove analogues of Torelli's theorems for these surfaces and find a “standard” representation for them as a complete intersection of three quadrics in $\mathbf P^5$.
@article{IM2_1974_8_1_a2,
author = {V. V. Nikulin},
title = {An analogue of the {Torelli} theorem for {Kummer} surfaces of {Jacobians}},
journal = {Izvestiya. Mathematics },
pages = {21--41},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a2/}
}
V. V. Nikulin. An analogue of the Torelli theorem for Kummer surfaces of Jacobians. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 21-41. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a2/