On a~class of special flows
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 219-232.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of special flows containing, in particular, the transitive U-flows. It is shown that each special flow from the class considered is metrically isomorphic to a Bernoulli flow.
@article{IM2_1974_8_1_a10,
     author = {L. A. Bunimovich},
     title = {On a~class of special flows},
     journal = {Izvestiya. Mathematics },
     pages = {219--232},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a10/}
}
TY  - JOUR
AU  - L. A. Bunimovich
TI  - On a~class of special flows
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 219
EP  - 232
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a10/
LA  - en
ID  - IM2_1974_8_1_a10
ER  - 
%0 Journal Article
%A L. A. Bunimovich
%T On a~class of special flows
%J Izvestiya. Mathematics 
%D 1974
%P 219-232
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a10/
%G en
%F IM2_1974_8_1_a10
L. A. Bunimovich. On a~class of special flows. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 219-232. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a10/

[1] Ornstein D. S., Imbedding Bernoulli shifts in flows, Preprint, Stanford University USA; Matematika, 15:6 (1971), 114–136 | Zbl

[2] Bunimovich L. A., “Vklyuchenie sdvigov Bernulli v nekotorye spetsialnye potoki”, Uspekhi matem. nauk, 28:3(171) (1973), 171–172 | MR | Zbl

[3] Rokhlin V. A., “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | Zbl

[4] Rokhlin V. A., “Izbrannye voprosy metricheskoi teorii dinamicheskikh sistem”, Uspekhi matem. nauk, 4:2(30) (1949), 57–128 | MR | Zbl

[5] Billingslei P., Ergodicheskaya teoriya i informatsiya, Mir, M., 1969 | MR

[6] Gurevich B. M., “Postroenie vozrastayuschikh razbienii dlya spetsialnykh potokov”, Teoriya veroyatn. i ee primen., 10:4 (1965), 693–712 | MR | Zbl

[7] Gurevich B. M., “Nekotorye usloviya suschestvovaniya $K$-razbienii dlya spetsialnykh potokov”, Tr. Mosk. matem. ob-va, 17, 1967, 89–116 | Zbl

[8] Statulyavichus V. A., “O predelnykh teoremakh dlya sluchainykh funktsii, I”, Litovskii matem .sb., 10:3 (1970), 583–592 | MR

[9] Sinai Ya. G., “Gibbsovskie mery v ergodicheskoi teorii”, Uspekhi matem. nauk, 27:4(166) (1972), 21–64 | MR | Zbl

[10] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 90, 1967 | MR

[11] Anosov D. V., Sinai Ya. G., “Nekotorye gladkie ergodicheskie sistemy”, Uspekhi matem. nauk, 22:5(137) (1967), 107–172 | MR | Zbl

[12] Sinai Ya. G., “Markovskie razbieniya i $Y$-diffeomorfizmy”, Funkts. analiz i ego prilozheniya, 2:1 (1968), 64–84 | MR

[13] Adler R. L., Weiss B., “Entropy, a complete metric invariant for automorphisms of the torus”, Proc. Nat. Akad. Sci. USA, 57:6 (1967), 1250–1252 | MR

[14] Bowen R., “Markov partitions and minimal sets for Axiom $\mathrm{A}$ diffeomorphisms”, Amer. J. Math., 92:4 (1970), 907–918 | DOI | MR | Zbl

[15] Bowen R., Simbolic dynamics for hyperbolic flows, Preprint, Berkeley University, USA

[16] Ornstein D. S., The isomorphism theorem for Bernoulli flows, Preprint, Stanford University, USA

[17] Ornstein D. S., “Some new results in the Kolmogorow–Sinai theory of entropy and ergodic theory”, Bul. Amer. Math. Soc., 77:6 (1971), 878–890 | DOI | MR | Zbl