Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1974_8_1_a1, author = {F. A. Bogomolov}, title = {K\"ahler manifolds with trivial canonical class}, journal = {Izvestiya. Mathematics }, pages = {9--20}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {1974}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a1/} }
F. A. Bogomolov. K\"ahler manifolds with trivial canonical class. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 9-20. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a1/
[1] Chzhen Shen-Shen, Kompleksnye mnogoobraziya, IL, M., 1961
[2] Calabi E., “On Kähler manifolds”, A symposium in honor of S. Lefschetz, Univ. Press, Princeton, 1957, 78–89 | MR
[3] Narasimhan M. S., Seshadri C. S., “Holomorphic vector bundles on compact Riemann surface”, Math. Ann., 155:1 (1964), 69–80 | DOI | MR | Zbl
[4] Narasimhan M. S., Simha R. R., “Manitolds with ample canonical class”, Inventiones Math., 5:2 (1968), 120–128 | DOI | MR | Zbl
[5] Tyurina G. N., “O deformatsiyakh kompleksnykh struktur na algebraicheskikh mnogoobraziyakh”, Dokl. AN SSSR, 156:2 (1964), 1316–1320
[6] Atiya M. F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85:1 (1957), 181–207 | DOI | MR | Zbl
[7] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Globalnaya teorema Torelli dlya poverkhnostei tipa K3”, Izv. AN SSSR. Ser. Matem., 35 (1971), 530–572
[8] Lichnerowicz A., “Variétés Kähleriennes à premiére class de Chern non negative et situation analogue dans le cas Riemannien”, Symposia Mathematica, X, Academ. Press, London, 1972, 3–18 | MR
[9] Matsushima Y., “Recent results on holomorphic vector fields”, J. Diff. Geom., 3 (1969), 477–480 | MR | Zbl