K\"ahler manifolds with trivial canonical class
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 9-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a duality law is established for holomorphic forms on manifolds with zero canonical class. This enables one to describe effectively the holomorphic and meromorphic maps between them, and also to prove Calabi's conjecture [2] on the Albanese map.
@article{IM2_1974_8_1_a1,
     author = {F. A. Bogomolov},
     title = {K\"ahler manifolds with trivial canonical class},
     journal = {Izvestiya. Mathematics },
     pages = {9--20},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1974},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a1/}
}
TY  - JOUR
AU  - F. A. Bogomolov
TI  - K\"ahler manifolds with trivial canonical class
JO  - Izvestiya. Mathematics 
PY  - 1974
SP  - 9
EP  - 20
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a1/
LA  - en
ID  - IM2_1974_8_1_a1
ER  - 
%0 Journal Article
%A F. A. Bogomolov
%T K\"ahler manifolds with trivial canonical class
%J Izvestiya. Mathematics 
%D 1974
%P 9-20
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a1/
%G en
%F IM2_1974_8_1_a1
F. A. Bogomolov. K\"ahler manifolds with trivial canonical class. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 9-20. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a1/

[1] Chzhen Shen-Shen, Kompleksnye mnogoobraziya, IL, M., 1961

[2] Calabi E., “On Kähler manifolds”, A symposium in honor of S. Lefschetz, Univ. Press, Princeton, 1957, 78–89 | MR

[3] Narasimhan M. S., Seshadri C. S., “Holomorphic vector bundles on compact Riemann surface”, Math. Ann., 155:1 (1964), 69–80 | DOI | MR | Zbl

[4] Narasimhan M. S., Simha R. R., “Manitolds with ample canonical class”, Inventiones Math., 5:2 (1968), 120–128 | DOI | MR | Zbl

[5] Tyurina G. N., “O deformatsiyakh kompleksnykh struktur na algebraicheskikh mnogoobraziyakh”, Dokl. AN SSSR, 156:2 (1964), 1316–1320

[6] Atiya M. F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85:1 (1957), 181–207 | DOI | MR | Zbl

[7] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Globalnaya teorema Torelli dlya poverkhnostei tipa K3”, Izv. AN SSSR. Ser. Matem., 35 (1971), 530–572

[8] Lichnerowicz A., “Variétés Kähleriennes à premiére class de Chern non negative et situation analogue dans le cas Riemannien”, Symposia Mathematica, X, Academ. Press, London, 1972, 3–18 | MR

[9] Matsushima Y., “Recent results on holomorphic vector fields”, J. Diff. Geom., 3 (1969), 477–480 | MR | Zbl