Stable equivalence of~algebraic tori
Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 1-7
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that the Picard modules $\operatorname{Pic}V_L(T)$ of projective models of algebraic tori $T$, computed over a field of characteristic zero, also determine birational invariants over a field of positive characteristic. We study the semigroup of classes of stably equivalent tori, and in particular prove that, for tori that are split over a cyclic extension, this is a group.
@article{IM2_1974_8_1_a0,
author = {V. E. Voskresenskii},
title = {Stable equivalence of~algebraic tori},
journal = {Izvestiya. Mathematics },
pages = {1--7},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {1974},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a0/}
}
V. E. Voskresenskii. Stable equivalence of~algebraic tori. Izvestiya. Mathematics , Tome 8 (1974) no. 1, pp. 1-7. http://geodesic.mathdoc.fr/item/IM2_1974_8_1_a0/