A regularity condition for generalized solutions of higher-order quasilinear elliptic equations
Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1371-1421

Voir la notice de l'article provenant de la source Math-Net.Ru

Regularity is proved for an arbitrary generalized solution of a quasilinear elliptic equation of divergent type which belongs to $W_2^{m+n/2}(\Omega')$, for an arbitrary strictly interior subregion $\Omega'$ of a region $\Omega$ ($2m$ is the order of the equation, and $n$ is the number of arguments). It follows from this, in particular, that the regularity problem has an affirmative solution in the two-dimensional case.
@article{IM2_1973_7_6_a7,
     author = {I. V. Skrypnik},
     title = {A regularity condition for generalized solutions of higher-order quasilinear elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {1371--1421},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a7/}
}
TY  - JOUR
AU  - I. V. Skrypnik
TI  - A regularity condition for generalized solutions of higher-order quasilinear elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1371
EP  - 1421
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a7/
LA  - en
ID  - IM2_1973_7_6_a7
ER  - 
%0 Journal Article
%A I. V. Skrypnik
%T A regularity condition for generalized solutions of higher-order quasilinear elliptic equations
%J Izvestiya. Mathematics 
%D 1973
%P 1371-1421
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a7/
%G en
%F IM2_1973_7_6_a7
I. V. Skrypnik. A regularity condition for generalized solutions of higher-order quasilinear elliptic equations. Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1371-1421. http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a7/