On the asymptotic behavior of solutions of quasielliptic differential equations with operator coefficients
Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1327-1370

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of differential equations on the semiaxis $T$ is considered with operator coefficients in a Hilbert space. The coefficients of the system depend on $t$ and for $t\to+\infty$ are stabilized in a certain sense. The spectrum of the limit operator consists of normal eigenvalues and is contained inside a certain double angle with opening less than $\pi$ which contains the imaginary axis. Asymptotic formulas are derived for the solution, and the contribution which a multiple eigenvalue of the limiting operator pencil makes to the asymptotic expressions is investigated.
@article{IM2_1973_7_6_a6,
     author = {B. A. Plamenevskii},
     title = {On the asymptotic behavior of solutions of quasielliptic differential equations with operator coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {1327--1370},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a6/}
}
TY  - JOUR
AU  - B. A. Plamenevskii
TI  - On the asymptotic behavior of solutions of quasielliptic differential equations with operator coefficients
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1327
EP  - 1370
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a6/
LA  - en
ID  - IM2_1973_7_6_a6
ER  - 
%0 Journal Article
%A B. A. Plamenevskii
%T On the asymptotic behavior of solutions of quasielliptic differential equations with operator coefficients
%J Izvestiya. Mathematics 
%D 1973
%P 1327-1370
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a6/
%G en
%F IM2_1973_7_6_a6
B. A. Plamenevskii. On the asymptotic behavior of solutions of quasielliptic differential equations with operator coefficients. Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1327-1370. http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a6/