Time changes in flows and mixing
Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1273-1294

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{U_t\}$ be an ergodic aperiodic flow in a Lebesgue space $(Y,\mu_1)$. By a time change, smooth along the trajectories of the flow and arbitrarily close to the identity, it can be transformed into a mixing flow. If, in addition, $Y$ is a compact metric space, $\{U_t\}$ is continuous and $\mu_1$ is regular, then the change may be chosen to be continuous on and equal to the identity everywhere except on an arbitrary open set of positive measure.
@article{IM2_1973_7_6_a4,
     author = {A. V. Kochergin},
     title = {Time changes in flows and mixing},
     journal = {Izvestiya. Mathematics },
     pages = {1273--1294},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a4/}
}
TY  - JOUR
AU  - A. V. Kochergin
TI  - Time changes in flows and mixing
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1273
EP  - 1294
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a4/
LA  - en
ID  - IM2_1973_7_6_a4
ER  - 
%0 Journal Article
%A A. V. Kochergin
%T Time changes in flows and mixing
%J Izvestiya. Mathematics 
%D 1973
%P 1273-1294
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a4/
%G en
%F IM2_1973_7_6_a4
A. V. Kochergin. Time changes in flows and mixing. Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1273-1294. http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a4/