On an additive functional homology equation connected with an ergodic rotation of the circle
Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1257-1271

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the title equation with continuous and even analytic right-hand side may have a measurable solution which is not Lebesgue integrable (and even with “worse” properties).
@article{IM2_1973_7_6_a3,
     author = {D. V. Anosov},
     title = {On an additive functional homology equation connected with an ergodic rotation of the circle},
     journal = {Izvestiya. Mathematics },
     pages = {1257--1271},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a3/}
}
TY  - JOUR
AU  - D. V. Anosov
TI  - On an additive functional homology equation connected with an ergodic rotation of the circle
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1257
EP  - 1271
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a3/
LA  - en
ID  - IM2_1973_7_6_a3
ER  - 
%0 Journal Article
%A D. V. Anosov
%T On an additive functional homology equation connected with an ergodic rotation of the circle
%J Izvestiya. Mathematics 
%D 1973
%P 1257-1271
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a3/
%G en
%F IM2_1973_7_6_a3
D. V. Anosov. On an additive functional homology equation connected with an ergodic rotation of the circle. Izvestiya. Mathematics , Tome 7 (1973) no. 6, pp. 1257-1271. http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a3/