An orthogonal basis of a local field
Izvestiya. Mathematics, Tome 7 (1973) no. 6, pp. 1225-1237
Cet article a éte moissonné depuis la source Math-Net.Ru
An effective construction is given of an orthogonal basis for a local field, starting from the Shafarevich basis.
@article{IM2_1973_7_6_a1,
author = {S. V. Vostokov},
title = {An orthogonal basis of a~local field},
journal = {Izvestiya. Mathematics},
pages = {1225--1237},
year = {1973},
volume = {7},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a1/}
}
S. V. Vostokov. An orthogonal basis of a local field. Izvestiya. Mathematics, Tome 7 (1973) no. 6, pp. 1225-1237. http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a1/
[1] Hasse H., “Die Gruppe der $p^n$-primären Zahlen für einen Primteiler $\mathfrak{p}$ von $p$”, J. Reine und Angew. Math., (176) (1936), 174–183 | Zbl
[2] Shafarevich I. R., “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | Zbl
[3] Kneser M., “Zum expliziten Reziprozitätsgesetz von Safarevič”, Math. Nach., 6:2 (1951), 89–96 | DOI | MR | Zbl
[4] Hasse H., Zahlentheorie, Berlin, 1963 | MR