The mean value of the modulus of a trigonometric sum
Izvestiya. Mathematics, Tome 7 (1973) no. 6, pp. 1199-1223
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain a simplified upper bound which is uniform in all parameters for the mean value of the modulus of a trigonometric sum.
@article{IM2_1973_7_6_a0,
author = {A. A. Karatsuba},
title = {The mean value of the modulus of a~trigonometric sum},
journal = {Izvestiya. Mathematics},
pages = {1199--1223},
year = {1973},
volume = {7},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a0/}
}
A. A. Karatsuba. The mean value of the modulus of a trigonometric sum. Izvestiya. Mathematics, Tome 7 (1973) no. 6, pp. 1199-1223. http://geodesic.mathdoc.fr/item/IM2_1973_7_6_a0/
[1] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR
[2] Karatsuba A. A., “Ob odnoi sisteme neopredelennykh uravnenii”, Matem. zametki, 4:2 (1968), 125–128 | Zbl
[3] Karatsuba A. A., “Teoremy o srednem i polnye trigonometricheskie summy”, Izv. AN SSSR. Ser. matem., 30 (1966), 183–206 | Zbl
[4] Linnik Yu. V., “Novye otsenki summ Veilya”, Dokl. AN SSSR, 37:7 (1942), 201–203 | MR
[5] Chandrasekharan K., Arithinetical functions, Springen-Verlag, Berlin, 1970 | MR | Zbl