G.~Szeg\"o's limit relation and properties of the corresponding orthogonal polynomials
Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1185-1198.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the validity of Szegö's limit theorem under the least restrictive hypotheses on the parameters of the system of orthogonal polynomials, and discuss some of the properties of the polynomials under these hypotheses.
@article{IM2_1973_7_5_a9,
     author = {Ya. L. Geronimus},
     title = {G.~Szeg\"o's limit relation and properties of the corresponding orthogonal polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {1185--1198},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a9/}
}
TY  - JOUR
AU  - Ya. L. Geronimus
TI  - G.~Szeg\"o's limit relation and properties of the corresponding orthogonal polynomials
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1185
EP  - 1198
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a9/
LA  - en
ID  - IM2_1973_7_5_a9
ER  - 
%0 Journal Article
%A Ya. L. Geronimus
%T G.~Szeg\"o's limit relation and properties of the corresponding orthogonal polynomials
%J Izvestiya. Mathematics 
%D 1973
%P 1185-1198
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a9/
%G en
%F IM2_1973_7_5_a9
Ya. L. Geronimus. G.~Szeg\"o's limit relation and properties of the corresponding orthogonal polynomials. Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1185-1198. http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a9/

[1] Geronimus Ya. L., “O polinomakh, ortogonalnykh na kruge, o trigonometricheskoi probleme momentov i ob assotsiirovannykh s neyu funktsiyakh tipa Carathéodory i Schur'a”, Matem. sb., 1944, no. 1, 99–130 | MR | Zbl

[2] Geronimus Ya. L., “Polinomy, ortogonalnye na kruge, i ikh prilozheniya”, Zap. Nauchno-issled. in-ta matem. i mekh. i KhMO, 19, 1948, 35–120 | MR | Zbl

[3] Geronimus Ya. L., Mnogochleny, ortogonalnye na okruzhnosti i na otrezke, Fizmatgiz, M., 1958 | Zbl

[4] Geronimus Ya. L., “Ob odnoi teoreme G. Sege, M. Katsa, G. Bakstera i Dzh. Girshmana”, Izv. AN SSSR. Ser. matem., 31 (1967), 289–304 | MR | Zbl

[5] Golinskii B. L., Ibragimov I. A., “O predelnoi teoreme G. Sege”, Izv. AN SSSR. Ser. matem., 35 (1971), 408–427 | MR | Zbl

[6] Ibragimov I. A., “Ob odnoi teoreme G. Sege”, Matem. zametki, 3:6 (1968), 693–702 | MR | Zbl

[7] Krein M. G., “O nekotorykh novykh banakhovykh algebrakh i teoremakh tipa Vinera–Levi dlya ryadov i integralov Fure”, Matem. issled. AN Moldavskoi SSR, 1:1 (1966), 82–109 | MR

[8] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GTTI, M., L., 1950

[9] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[10] Storozhenko E. A., “O vlozhenii v klass $e^L$”, Matem. zametki, 10:1 (1971), 17–24 | MR | Zbl

[11] Baxter G., “A convergence equivalence related to polynomials, orthogonal on the unit circle”, Trans. Amer. Math. Soc., 99:3 (1961), 471–487 | DOI | MR | Zbl

[12] Hardy G., Littlewood J., “Some properties of fractional integrals”, Math. Z., 27 (1928), 565–605 | DOI | MR

[13] Hardy G., Littlewood J., “A convergence criterion for Fourier series”, Math. Z., 28 (1928), 612–634 | DOI | MR | Zbl

[14] Hirschman J., “On a theorem of Szegő, Kac and Baxter”, J. Analyse Math., 14 (1965), 225–234 | DOI | MR | Zbl

[15] Kac M., “Toeplitz matrices, translation kernels and a related problem in probability”, Duke Math. J., 21 (1954), 501–510 | DOI | MR

[16] Knopp K., Theorie und Anwendung der unendlichen Reihen, Berlin, 1924 | Zbl

[17] Szegǒ G., “Beiträge zur Theorie der Toeplitzschen Formen”, Math. Z., 6 (1920), 167–202 ; 9 (1921), 167–190 | DOI | MR | DOI | MR

[18] Szegő G., “On certain Hermitian forms associated with the Fourier series of a positive function”, Comm. Sém. Math. Univ. Lund, 1952 (1952), 228–238 | MR | Zbl