On least supersolutions for a~problem with an obstacle
Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1153-1183

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a least supersolution on a closed convex set of functions is proved for certain classes of quasilinear elliptic and parabolic equations. Such a least supersolution is a solution of a variational inequality.
@article{IM2_1973_7_5_a8,
     author = {A. A. Arkhipova},
     title = {On least supersolutions for a~problem with an obstacle},
     journal = {Izvestiya. Mathematics },
     pages = {1153--1183},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a8/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - On least supersolutions for a~problem with an obstacle
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1153
EP  - 1183
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a8/
LA  - en
ID  - IM2_1973_7_5_a8
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T On least supersolutions for a~problem with an obstacle
%J Izvestiya. Mathematics 
%D 1973
%P 1153-1183
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a8/
%G en
%F IM2_1973_7_5_a8
A. A. Arkhipova. On least supersolutions for a~problem with an obstacle. Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1153-1183. http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a8/