Area theorems for functions analytic in a~finitely connected domain
Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1129-1151.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider functions analytic in a given finitely connected domain apart from a finite number of singularities of possibly logarithmic type. We prove some area theorems which generalize to these functions certain known results, in particular Goluzin's area theorem on functions $p$-valent in a disc. We establish some integral criteria of when functions meromorphic in a given multiply-connected domain are univalent functions there and pairwise without common values.
@article{IM2_1973_7_5_a7,
     author = {Yu. E. Alenitsyn},
     title = {Area theorems for functions analytic in a~finitely connected domain},
     journal = {Izvestiya. Mathematics },
     pages = {1129--1151},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a7/}
}
TY  - JOUR
AU  - Yu. E. Alenitsyn
TI  - Area theorems for functions analytic in a~finitely connected domain
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1129
EP  - 1151
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a7/
LA  - en
ID  - IM2_1973_7_5_a7
ER  - 
%0 Journal Article
%A Yu. E. Alenitsyn
%T Area theorems for functions analytic in a~finitely connected domain
%J Izvestiya. Mathematics 
%D 1973
%P 1129-1151
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a7/
%G en
%F IM2_1973_7_5_a7
Yu. E. Alenitsyn. Area theorems for functions analytic in a~finitely connected domain. Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1129-1151. http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a7/

[1] Alenitsyn Yu. E., “Konformnye otobrazheniya mnogosvyaznoi oblasti na mnogolistnye kanonicheskie poverkhnosti”, Izv. AN SSSR. Ser. matem., 28 (1964), 607–644 | MR | Zbl

[2] Alenitsyn Yu. E., “Nekotorye teoremy ploschadei dlya funktsii, analiticheskikh v konechnosvyaznoi oblasti”, Dokl. AN SSSR, 209:3 (1973), 521–524 | Zbl

[3] Goluzin G. M., “O $p$-listnykh funktsiyakh”, Matem. sb., 8(50):2 (1940), 277–284 | MR | Zbl

[4] Milin I. M., “Zamknutye ortonormalnye sistemy analiticheskikh funktsii v konechnosvyaznykh oblastyakh”, Dokl. AN SSSR, 157:5 (1964), 1043–1046 | MR | Zbl

[5] Bazilevich I. E., “Ob odnom kriterii odnolistnosti regulyarnykh funktsii i dispersii ikh koeffitsientov”, Matem. sb., 74(116):1 (1967), 133–146 | MR | Zbl

[6] Bazilevich I. E., “Dopolnenie k state “Ob odnom kriterii odnolistnosti regulyarnykh funktsii””, Matem. sb., 84(126):4 (1971), 630–632 | MR | Zbl

[7] Meschkowski H., “Einige Extremalprobleme aus der Theorie der konformen Abbildung”, Ann. Acad. Sci. Fenn., Ser. AI, 117 (1952), 1–12 | MR

[8] Alenitsyn Yu. E., “O funktsiyakh, $p$-listnykh v srednem”, Matem. sb., 20(62):1 (1947), 113–124 | MR | Zbl

[9] Alenitsyn Yu. E., “O funktsiyakh, $p$-listnykh v srednem”, Matem. sb., 27(69):2 (1950), 285–296 | MR | Zbl

[10] Garabedian P. R., Schiffer M., “Identities in the theorie of conformal mapping”, Trans. Amer. Math. Soc., 66:2 (1949), 187–238 | DOI | MR

[11] Abe H., “On univalent functions in an annulus”, Math. Japan, 5:1 (1958), 25–28 | MR | Zbl

[12] Milin I. M., “Metod ploschadei v teorii odnolistnykh funktsii”, Dokl. AN SSSR, 154:2 (1964), 264–267 | MR | Zbl

[13] Gromova L. L., Lebedev N. A., “O teoremakh ploschadei dlya nenalegayuschikh konechnosvyaznykh oblastei, I”, Vestn. LGU, 19:4 (1968), 44–58 | MR | Zbl