On the complete $n$-tuple of roots of the operator equation cirresponding to a~polynomial operator bundle
Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1105-1128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper treats the relationship between spectral properties of an $n$th degree polynomial operator bundle and spectral properties of roots of the corresponding operator equation. Basic to this investigation is the concept, introduced in this paper, of Vandermonde operator.
@article{IM2_1973_7_5_a6,
     author = {A. S. Markus and I. V. Mereutsa},
     title = {On the complete $n$-tuple of roots of the operator equation cirresponding to a~polynomial operator bundle},
     journal = {Izvestiya. Mathematics },
     pages = {1105--1128},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a6/}
}
TY  - JOUR
AU  - A. S. Markus
AU  - I. V. Mereutsa
TI  - On the complete $n$-tuple of roots of the operator equation cirresponding to a~polynomial operator bundle
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1105
EP  - 1128
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a6/
LA  - en
ID  - IM2_1973_7_5_a6
ER  - 
%0 Journal Article
%A A. S. Markus
%A I. V. Mereutsa
%T On the complete $n$-tuple of roots of the operator equation cirresponding to a~polynomial operator bundle
%J Izvestiya. Mathematics 
%D 1973
%P 1105-1128
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a6/
%G en
%F IM2_1973_7_5_a6
A. S. Markus; I. V. Mereutsa. On the complete $n$-tuple of roots of the operator equation cirresponding to a~polynomial operator bundle. Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1105-1128. http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a6/

[1] Krein M. G., Langer G. K., “O nekotorykh matematicheskikh printsipakh lineinoi teorii dempfirovannykh kolebanii kontinuumov”, Tr. mezhdunarodnogo simpoziuma po primeneniyu teorii funktsii kompleksnogo peremennogo v mekhanike sploshnoi sredy, t. 2, Nauka, M., 1965, 283–322 | MR

[2] Langer H., “Über eine Klasse nichtlinearer Eigenwertprobleme”, Acta Sci. Math. Szeged, 34 (1973) | MR | Zbl

[3] Markus A. S., Matsaev V. I., Russu G. I., “O nekotorykh obobscheniyakh teorii silno dempfirovannykh puchkov na sluchai puchkov proizvolnogo poryadka”, Acta Sci. Math. Szeged, 34 (1973), 245–271 | MR | Zbl

[4] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[5] Berberian S. K., “Approximative proper vectors”, Proc. Amer. Math. Soc., 13:1 (1962), 111–114 | DOI | MR | Zbl

[6] Lyubich Yu. I., “O spektre predstavleniya topologicheskoi abelevoi gruppy”, Dokl. AN SSSR, 200:4 (1971), 777–780 | Zbl

[7] Mereutsa I. V., “O svoistvakh kornei operatornogo uravneniya, sootvetstvuyuschego polinomialnomu operatornomu puchku”, Matem. issled., 8:1 (1973), 96–115 | MR | Zbl

[8] Sigal E. I., “O kratnosti kharakteristicheskogo chisla proizvedeniya operator-funktsii”, Matem. issled., 5:1 (1970), 118–127 | MR | Zbl

[9] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh operatorov”, Dokl. AN SSSR, 77:1 (1951), 11–14 | Zbl

[10] Markus A. S., “K spektralnoi teorii polinomialnykh operatornykh puchkov v banakhovom prostranstve”, Sib. matem. zh., 8:6 (1967), 1346–1369 | MR | Zbl

[11] Markus A. S., Vizitei V. N., “O skhodimosti kratnykh razlozhenii po sisteme sobstvennykh i prisoedinennykh vektorov operatornogo puchka”, Matem. sb., 66(108) (1965), 287–320 | MR

[12] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR | Zbl

[13] Balinskii A. I., Zorii L. M., “Pro odin cnocib doslidzhennya spektra polinomialnikh puchkiv samospryazhenikh onepatopiv u gilbertovomu prostori”, Dopovidi AN URSR, 1972, no. 6, 485–488 | MR

[14] Markus A. S., Mereutsa I. V., “O svyazi mezhdu spektralnymi svoistvami polinomialnogo puchka i kornei sootvetstvuyuschego operatornogo uravneniya”, Funktsionalnyi analiz i ego prilozh., 7:1 (1973), 77–78 | MR | Zbl