Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group
Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1039-1055.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find all the affine algebraic surfaces that admit a quasitransitive algebraic group of biregular automorphisms (i.e. a group such that the complement of one orbit of the action is either empty or of dimension zero). The ground field is algebraically closed and of characteristic zero.
@article{IM2_1973_7_5_a3,
     author = {V. L. Popov},
     title = {Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group},
     journal = {Izvestiya. Mathematics },
     pages = {1039--1055},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a3/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 1039
EP  - 1055
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a3/
LA  - en
ID  - IM2_1973_7_5_a3
ER  - 
%0 Journal Article
%A V. L. Popov
%T Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group
%J Izvestiya. Mathematics 
%D 1973
%P 1039-1055
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a3/
%G en
%F IM2_1973_7_5_a3
V. L. Popov. Classification of affine algebraic surfaces that are quasihomogeneous with respect to an algebraic group. Izvestiya. Mathematics , Tome 7 (1973) no. 5, pp. 1039-1055. http://geodesic.mathdoc.fr/item/IM2_1973_7_5_a3/

[1] Gizatullin M. X., “Affinnye poverkhnosti, kvaziodnorodnye otnositelno algebraicheskoi gruppy”, Izv. AN SSSR. Ser. matem., 35 (1971), 738–753 | MR

[2] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 749–763 | MR

[3] Rosenlicht M., “Some basic theorems on algebraic groups”, Amer. J. Math., 78:2 (1956), 401–443 | DOI | MR | Zbl

[4] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[5] Séminaire C. Chevalley, 1956–1958, Classification des groupes de Lie algébriques, Secrétariat mathématique, Paris, 1958, 2 vols | MR

[6] Popov V. L., “O stabilnosti deistviya algebraicheskoi gruppy na algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36 (1972), 371–385 | MR | Zbl

[7] Bialynicki-Birula A., “On homogeneous affine spaces of linear algebraic groups”, Amer. J. Math., 85 (1963), 577–582 | DOI | MR | Zbl

[8] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[9] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[10] Mumford D., Geometric invariant theory, Springer-Verlag, Berlin, Heidelberg, New York, 1965 | MR | Zbl

[11] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30(72):2 (1952), 349–462 | MR | Zbl

[12] Shafarevich I. R., “On some infinitedimensional groups”, Rendiconti di Matematica, 25 (1966), 208–212 | MR | Zbl