Smooth structures on Poincar\'e complexes
Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 919-932

Voir la notice de l'article provenant de la source Math-Net.Ru

The main theorem states that if the Spivak normal fibration associated to a Poincaré complex admits a vector bundle structure, then the Poincaré complex is homotopy equivalent to the union of two smooth manifolds with their boundaries identified via a homotopy equivalence. The theorem is applied to the question of existence of smooth structures on Poincaré complexes.
@article{IM2_1973_7_4_a7,
     author = {S. B. Shlosman},
     title = {Smooth structures on {Poincar\'e} complexes},
     journal = {Izvestiya. Mathematics },
     pages = {919--932},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a7/}
}
TY  - JOUR
AU  - S. B. Shlosman
TI  - Smooth structures on Poincar\'e complexes
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 919
EP  - 932
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a7/
LA  - en
ID  - IM2_1973_7_4_a7
ER  - 
%0 Journal Article
%A S. B. Shlosman
%T Smooth structures on Poincar\'e complexes
%J Izvestiya. Mathematics 
%D 1973
%P 919-932
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a7/
%G en
%F IM2_1973_7_4_a7
S. B. Shlosman. Smooth structures on Poincar\'e complexes. Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 919-932. http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a7/