Smooth structures on Poincaré complexes
Izvestiya. Mathematics, Tome 7 (1973) no. 4, pp. 919-932
Cet article a éte moissonné depuis la source Math-Net.Ru
The main theorem states that if the Spivak normal fibration associated to a Poincaré complex admits a vector bundle structure, then the Poincaré complex is homotopy equivalent to the union of two smooth manifolds with their boundaries identified via a homotopy equivalence. The theorem is applied to the question of existence of smooth structures on Poincaré complexes.
@article{IM2_1973_7_4_a7,
author = {S. B. Shlosman},
title = {Smooth structures on {Poincar\'e} complexes},
journal = {Izvestiya. Mathematics},
pages = {919--932},
year = {1973},
volume = {7},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a7/}
}
S. B. Shlosman. Smooth structures on Poincaré complexes. Izvestiya. Mathematics, Tome 7 (1973) no. 4, pp. 919-932. http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a7/
[1] Mischenko A. S., “Gomotopicheskaya invariantnost vysshikh signatur”, Izv. AN SSSR. Ser. matem., 35 (1971), 1316–1355 | Zbl
[2] Mischenko A. S., “Perestroiki kompleksov Puankare”, Matem. sb., 85:3 (1971), 367–372
[3] Spivak M., “Spaces, satisfying Poincare duality”, Topology, 6 (1967), 77–102 | DOI | MR
[4] Wall C. T. C., Surgery of compact manifolds, Preprint, Liverpool Univ., 1969
[5] Wall C. T. C., “Poincare complexes, I”, Ann. Math., 86:2 (1967), 213–245 | DOI | MR | Zbl
[6] Shlosman S. B., “Podmnogoobraziya korazmernosti odin i prostoi gomotopicheskii tip”, Matem. zametki, 12:2 (1972), 167–175 | Zbl