Local topological properties of analytic mappings
Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 883-917.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper one studies the local topological structure of analytic mappings. It is proved that the complement in the space of all germs of analytic mappings from $\mathbf C^n$ to $\mathbf C^q$ of the set of germs whose topological type is unchanged under alteration of large terms of the Taylor series has infinite codimension.
@article{IM2_1973_7_4_a6,
     author = {A. N. Varchenko},
     title = {Local topological properties of analytic mappings},
     journal = {Izvestiya. Mathematics },
     pages = {883--917},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a6/}
}
TY  - JOUR
AU  - A. N. Varchenko
TI  - Local topological properties of analytic mappings
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 883
EP  - 917
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a6/
LA  - en
ID  - IM2_1973_7_4_a6
ER  - 
%0 Journal Article
%A A. N. Varchenko
%T Local topological properties of analytic mappings
%J Izvestiya. Mathematics 
%D 1973
%P 883-917
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a6/
%G en
%F IM2_1973_7_4_a6
A. N. Varchenko. Local topological properties of analytic mappings. Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 883-917. http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a6/

[1] Varchenko A. N., “O rostkakh analiticheskikh otobrazhenii, topologicheskii tip kotorykh opredelyaetsya konechnoi struei”, Funktsionalnyi analiz i ego prilozheniya, 6:3 (1972), 63–64 | MR | Zbl

[2] Varchenko A. N., “Teoremy o topologicheskoi ekvisingulyarnosti semeistv algebraicheskikh mnogoobrazii i semeistv polinomialnykh otobrazhenii”, Izv. AN SSSR. Ser. matem., 36 (1972), 957–1019 | MR | Zbl

[3] Lojasiewicz S., “Triangulation of semianalytic sets”, Annali della Scuola Normale Superiore di Pisa, Serie III, XVIII:IV (1964), 449–474 | MR

[4] Abhyankar S. S., Local analitic geometry, Academic Press, New York, London, 1964 | MR | Zbl

[5] Tom R., “Lokalnye topologicheskie svoistva differentsiruemykh otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, Mir, M., 1968, 164–178 | MR

[6] Mezer Dzh., “Stratifikatsii i otobrazheniya”, Uspekhi matem. nauk, 27:5 (1967, 1972), 85–118