Representations of quivers of infinite type
Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 749-792.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe the quiver representations (see [1]) which do not contain die problem of reducing a pair of matrices by similarity transformations.
@article{IM2_1973_7_4_a2,
     author = {L. A. Nazarova},
     title = {Representations of quivers of infinite type},
     journal = {Izvestiya. Mathematics },
     pages = {749--792},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a2/}
}
TY  - JOUR
AU  - L. A. Nazarova
TI  - Representations of quivers of infinite type
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 749
EP  - 792
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a2/
LA  - en
ID  - IM2_1973_7_4_a2
ER  - 
%0 Journal Article
%A L. A. Nazarova
%T Representations of quivers of infinite type
%J Izvestiya. Mathematics 
%D 1973
%P 749-792
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a2/
%G en
%F IM2_1973_7_4_a2
L. A. Nazarova. Representations of quivers of infinite type. Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 749-792. http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a2/

[1] Gabriel P., “Unzerlegbure Darstellungen, I”, Manus. Math., 6:1 (1972), 71–103 | DOI | MR | Zbl

[2] Brenner S., Butler M. C. R., “On diagrams of vector space”, J. Austr. Math. Soc., IX:33 (1969), 445–448 | DOI | MR

[3] Kruglyak S. A., “Predstavleniya algebr, kvadrat radikala kotorykh raven nulyu”, Issledovaniya po teorii predstavlenii, Zapiski seminarov LOMI AN SSSR, 28, 1972, 60–68 | MR | Zbl

[4] Nazarova L. A., Roiter A. V., “Predstavleniya chastichno uporyadochennykh mnozhestv”, Issledovaniya po teorii predstavlenii, Zap. seminarov LOMI AN SSSR, 28, 1972, 69–92 | MR | Zbl

[5] Gantmakher R. F., Teoriya matrits, Fizmatgiz, M., 1953

[6] Gelfand I. M., Ponomarev V. A., “Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space”, Hilbert space operators and operator algebras (Proc. Internat. Conf., Tihany, 1970), North-Holland, Amsterdam, 1972, 163–237, Colloq. Math. Soc. János Bolyai, 5 | MR

[7] Nazarova L. A., “Predstavleniya chetveriady”, Izv. AN SSSR. Ser. matem., 31 (1967), 1361–1377 | MR

[8] Nazarova L. A., “Tselochislennye predstavleniya chetvernoi gruppy”, Dokl. AN SSSR, 140:5 (1961), 1011–1014 | MR | Zbl

[9] Gelfand I. M., Ponomarev V. A., “Zamechaniya o klassifikatsii pary kommutiruyuschikh lineinykh preobrazovanii v konechnomernom prostranstve”, Funkts. analiz, 3:4 (1969), 84–82 | MR

[10] Brenner S., “Endomorphism algebras of vector space with distinguished set of subspaces”, J. Alg., 6 (1967), 100–114 | DOI | MR | Zbl

[11] Corner A. L. F., “Endomorphism algebras of large modules with distinguished submodules”, J. Alg., 11 (1969), 156–185 | DOI | MR

[12] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82:1 (1963), 8–29 | DOI | MR

[13] Nazarova L. A., Roiter A. V., “Konechnoporozhdennye moduli nad diadoi dvukh lokalnykh dedekindovykh kolets i konechnye gruppy, obladayuschie abelevym normalnym delitelem indeksa $p$”, Izv. AN SSSR. Ser. matem., 33 (1969), 65–89 | MR | Zbl

[14] Kleiner M. M., “O tochnykh predstavleniyakh chastichno uporyadochennykh mnozhestv konechnogo tipa”, Issledovaniya po teorii predstavlenii, Zap. seminarov LOMI AN SSSR, 28, 1972, 32–41 | MR | Zbl

[15] Gelfand I. M., Ponomarëv V. A., “Nerazlozhimye predstavleniya gruppy Lorentsa”, Uspekhi matem. nauk, 23:2 (1968), 3–59 | MR | Zbl

[16] Roiter A. V., “Teoriya matrichnykh zadach”, Doklad shkoly-sem. po teorii predstavlenii, Uzhgorod, 1972

[17] Kats V. G., “Prostye graduirovannye algebry Li konechnogo rosta”, Funkts. analiz i ego prilozh., 1:4 (1967), 82–84 | MR

[18] Bernshtein I. N., Gelfand I. M., Ponomarëv V. A., “Funktory Kokstera i kolchany Gabrielya”, Uspekhi matem. nauk, 28:2 (1973), 19–33 | MR | Zbl