On ``universal norms'' of formal groups defined over the ring of integers of a~local field
Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 733-747.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that the group of universal norms of a formal group corresponding to an elliptic curve of one of the three main types defined over a quasilocal field [11] is trivial. Applications are also indicated.
@article{IM2_1973_7_4_a1,
     author = {O. N. Vvedenskii},
     title = {On ``universal norms'' of formal groups defined over the ring of integers of a~local field},
     journal = {Izvestiya. Mathematics },
     pages = {733--747},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a1/}
}
TY  - JOUR
AU  - O. N. Vvedenskii
TI  - On ``universal norms'' of formal groups defined over the ring of integers of a~local field
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 733
EP  - 747
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a1/
LA  - en
ID  - IM2_1973_7_4_a1
ER  - 
%0 Journal Article
%A O. N. Vvedenskii
%T On ``universal norms'' of formal groups defined over the ring of integers of a~local field
%J Izvestiya. Mathematics 
%D 1973
%P 733-747
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a1/
%G en
%F IM2_1973_7_4_a1
O. N. Vvedenskii. On ``universal norms'' of formal groups defined over the ring of integers of a~local field. Izvestiya. Mathematics , Tome 7 (1973) no. 4, pp. 733-747. http://geodesic.mathdoc.fr/item/IM2_1973_7_4_a1/

[1] Greenberg M., “Schemata over local rings”, Ann. Math., 73:3 (1961), 624–648 | DOI | MR | Zbl

[2] Mazur B., Rational points of abelian varieties with values in towers of number fields, preprint | MR

[3] Manin Yu. P., “Krugovye polya i modulyarnye krivye”, Uspekhi matem. nauk, 26:6 (1971), 7–71 | MR | Zbl

[4] Neron A., “Modeles minimaux des variétés abéliennes sur les corps locaux et globaux”, Publ. Math. IHES, 1964, no. 2 | MR

[5] Ogg A. P., “Cohomology of abelian varieties over function fields”, Ann. Math., 76:2 (1962), 185–220 | DOI | MR

[6] Serre J.-P., “Groupes proalgébriques”, Publ. Math. IHES, 1960, no. 7, 1–66 | MR

[7] Serre J.-P., “Sur les corps locaux à corps résiduell algébriquement clos”, Bull. Soc. Math. France, 89:2 (1961), 105–454 | MR

[8] Algebraicheskaya teoriya chisel, Mir, M., 1969, doklad Zh.-P. Serra | MR

[9] Shafarevich I. R., “Glavnye odnorodnye prostranstva, opredelennye nad polem funktsii”, Tr. Matem. in-ta AN SSSR im. V. A.Steklova, 64, 1961, 316–346

[10] Vvedenskii O. N., “Dvoistvennost v ellipticheskikh krivykh nad lokalnym polem, I, II”, Izv. AN SSSR. Ser. matem., 28 (1964), 1091–1112 ; 30 (1966), 891–922 | MR | Zbl | MR | Zbl

[11] Vvedenskii O. N., “O lokalnykh “polyakh klassov” ellipticheskikh krivykh”, Izv. AN SSSR. Ser. matem., 37 (1973), 20–88 | MR