Best possible localization conditions for rectangular Ces\'aro means and Abel means in restricted summability of a~multiple trigonometric Fourier series in Liouville classes
Izvestiya. Mathematics , Tome 7 (1973) no. 3, pp. 589-599.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the best possible localization conditions are established for the rectangular Cesáro means of an arbitrary positive order and the means of Abel's method for the bounded summation of a multiple trigonometric Fourier series in the Liouville classes $L_p^{*\gamma}(G)$.
@article{IM2_1973_7_3_a6,
     author = {N. Ch. Krutitskaya},
     title = {Best possible localization conditions for rectangular {Ces\'aro} means and {Abel} means in restricted summability of a~multiple trigonometric {Fourier} series in {Liouville} classes},
     journal = {Izvestiya. Mathematics },
     pages = {589--599},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a6/}
}
TY  - JOUR
AU  - N. Ch. Krutitskaya
TI  - Best possible localization conditions for rectangular Ces\'aro means and Abel means in restricted summability of a~multiple trigonometric Fourier series in Liouville classes
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 589
EP  - 599
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a6/
LA  - en
ID  - IM2_1973_7_3_a6
ER  - 
%0 Journal Article
%A N. Ch. Krutitskaya
%T Best possible localization conditions for rectangular Ces\'aro means and Abel means in restricted summability of a~multiple trigonometric Fourier series in Liouville classes
%J Izvestiya. Mathematics 
%D 1973
%P 589-599
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a6/
%G en
%F IM2_1973_7_3_a6
N. Ch. Krutitskaya. Best possible localization conditions for rectangular Ces\'aro means and Abel means in restricted summability of a~multiple trigonometric Fourier series in Liouville classes. Izvestiya. Mathematics , Tome 7 (1973) no. 3, pp. 589-599. http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a6/

[1] Krutitskaya N. Ch., “Lokalizatsiya pri ogranichennom summirovanii metodami Chezaro, Rissa i Abelya kratnykh ryadov Fure”, Matem. zametki, 12:4 (1972), 355–364 | Zbl

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1965 | MR

[3] Ilin V. A., “Usloviya lokalizatsii pryamougolnykh chastichnykh summ kratnogo trigonometricheskogo ryada Fure v klassakh S. M. Nikolskogo”, Matem. zametki, 8:5 (1970), 595–606 | MR

[4] Zigmund A., Trigonometricheskie ryady, t. II, Mir, M., 1965 | MR

[5] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[6] Herriot I. G., “Norlung summability of multiple Fourier series”, Duke J., 11 (1944), 735–754 | DOI | MR | Zbl

[7] Nicolsky S., M., Lions J. L., Lizorkin P. J., “Integral representation und isomorphism proporties of some classes of functions”, Ann. Dela Scuola Norm. Super, di Pisa (3), 19 (1965), 127–178 | MR