Best possible localization conditions for rectangular Cesáro means and Abel means in restricted summability of a multiple trigonometric Fourier series in Liouville classes
Izvestiya. Mathematics, Tome 7 (1973) no. 3, pp. 589-599 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper the best possible localization conditions are established for the rectangular Cesáro means of an arbitrary positive order and the means of Abel's method for the bounded summation of a multiple trigonometric Fourier series in the Liouville classes $L_p^{*\gamma}(G)$.
@article{IM2_1973_7_3_a6,
     author = {N. Ch. Krutitskaya},
     title = {Best possible localization conditions for rectangular {Ces\'aro} means and {Abel} means in restricted summability of a~multiple trigonometric {Fourier} series in {Liouville} classes},
     journal = {Izvestiya. Mathematics},
     pages = {589--599},
     year = {1973},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a6/}
}
TY  - JOUR
AU  - N. Ch. Krutitskaya
TI  - Best possible localization conditions for rectangular Cesáro means and Abel means in restricted summability of a multiple trigonometric Fourier series in Liouville classes
JO  - Izvestiya. Mathematics
PY  - 1973
SP  - 589
EP  - 599
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a6/
LA  - en
ID  - IM2_1973_7_3_a6
ER  - 
%0 Journal Article
%A N. Ch. Krutitskaya
%T Best possible localization conditions for rectangular Cesáro means and Abel means in restricted summability of a multiple trigonometric Fourier series in Liouville classes
%J Izvestiya. Mathematics
%D 1973
%P 589-599
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a6/
%G en
%F IM2_1973_7_3_a6
N. Ch. Krutitskaya. Best possible localization conditions for rectangular Cesáro means and Abel means in restricted summability of a multiple trigonometric Fourier series in Liouville classes. Izvestiya. Mathematics, Tome 7 (1973) no. 3, pp. 589-599. http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a6/

[1] Krutitskaya N. Ch., “Lokalizatsiya pri ogranichennom summirovanii metodami Chezaro, Rissa i Abelya kratnykh ryadov Fure”, Matem. zametki, 12:4 (1972), 355–364 | Zbl

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1965 | MR

[3] Ilin V. A., “Usloviya lokalizatsii pryamougolnykh chastichnykh summ kratnogo trigonometricheskogo ryada Fure v klassakh S. M. Nikolskogo”, Matem. zametki, 8:5 (1970), 595–606 | MR

[4] Zigmund A., Trigonometricheskie ryady, t. II, Mir, M., 1965 | MR

[5] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR

[6] Herriot I. G., “Norlung summability of multiple Fourier series”, Duke J., 11 (1944), 735–754 | DOI | MR | Zbl

[7] Nicolsky S., M., Lions J. L., Lizorkin P. J., “Integral representation und isomorphism proporties of some classes of functions”, Ann. Dela Scuola Norm. Super, di Pisa (3), 19 (1965), 127–178 | MR