Nondegenerate operator algebras in spaces with an indefinite metric
Izvestiya. Mathematics, Tome 7 (1973) no. 3, pp. 529-534
Cet article a éte moissonné depuis la source Math-Net.Ru
A theorem on the bicommutant is proved for nondegenerate $\mathcal J$-symmetric operator algebras in the space $\Pi_k$ ($k\infty$). By means of this theorem a simple description is given of the set of unitarily equivalent classes of nondegenerate, weakly closed $\mathcal J$-symmetric algebras.
@article{IM2_1973_7_3_a3,
author = {V. I. Liberzon and V. S. Shul'man},
title = {Nondegenerate operator algebras in spaces with an indefinite metric},
journal = {Izvestiya. Mathematics},
pages = {529--534},
year = {1973},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a3/}
}
V. I. Liberzon; V. S. Shul'man. Nondegenerate operator algebras in spaces with an indefinite metric. Izvestiya. Mathematics, Tome 7 (1973) no. 3, pp. 529-534. http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a3/
[1] Ismagilov R. S., “Algebry operatorov v prostranstvakh s indefinitnoi metrikoi”, Dokl. AN SSSR, 158:2 (1964), 268–270 | MR | Zbl
[2] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl
[3] Iokhvidov I. S., Krein M. G., “Spektralnaya teoriya operatorov v prostranstve s indefinitnoi metrikoi”, Tr. Mosk. Matem. ob-va, 5, 1956, 367–432