Cyclic modules for a~complex semisimple Lie group
Izvestiya. Mathematics , Tome 7 (1973) no. 3, pp. 497-510

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider cyclic modules generated by elementary representations of a complex semisimple Lie group. The main result is a theorem on cyclicity (Theorem 3 of § 4), according to which the elementary representations are generated by cyclic vectors of a special type with respect to a maximal compact subgroup. We give a classification of completely irreducible representations in terms of the characteristic (highest and lowest) weights.
@article{IM2_1973_7_3_a1,
     author = {D. P. Zhelobenko},
     title = {Cyclic modules for a~complex semisimple {Lie} group},
     journal = {Izvestiya. Mathematics },
     pages = {497--510},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a1/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Cyclic modules for a~complex semisimple Lie group
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 497
EP  - 510
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a1/
LA  - en
ID  - IM2_1973_7_3_a1
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Cyclic modules for a~complex semisimple Lie group
%J Izvestiya. Mathematics 
%D 1973
%P 497-510
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a1/
%G en
%F IM2_1973_7_3_a1
D. P. Zhelobenko. Cyclic modules for a~complex semisimple Lie group. Izvestiya. Mathematics , Tome 7 (1973) no. 3, pp. 497-510. http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a1/