Cyclic modules for a~complex semisimple Lie group
Izvestiya. Mathematics , Tome 7 (1973) no. 3, pp. 497-510.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider cyclic modules generated by elementary representations of a complex semisimple Lie group. The main result is a theorem on cyclicity (Theorem 3 of § 4), according to which the elementary representations are generated by cyclic vectors of a special type with respect to a maximal compact subgroup. We give a classification of completely irreducible representations in terms of the characteristic (highest and lowest) weights.
@article{IM2_1973_7_3_a1,
     author = {D. P. Zhelobenko},
     title = {Cyclic modules for a~complex semisimple {Lie} group},
     journal = {Izvestiya. Mathematics },
     pages = {497--510},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a1/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Cyclic modules for a~complex semisimple Lie group
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 497
EP  - 510
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a1/
LA  - en
ID  - IM2_1973_7_3_a1
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Cyclic modules for a~complex semisimple Lie group
%J Izvestiya. Mathematics 
%D 1973
%P 497-510
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a1/
%G en
%F IM2_1973_7_3_a1
D. P. Zhelobenko. Cyclic modules for a~complex semisimple Lie group. Izvestiya. Mathematics , Tome 7 (1973) no. 3, pp. 497-510. http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a1/

[1] Berezin F. A., “Operatory Laplasa na poluprostykh gruppakh Li”, Tr. Mosk. matem. ob-va, 6, 1957, 371–463 ; “Письмо в редакцию”, Тр. Моск. матем. об-ва, 12, 1963, 453–466 | MR | Zbl | MR | Zbl

[2] Bernshtein I. N., Gelfand I. M., Gelfand S. I., “Struktura predstavlenii, porozhdennykh vektorami starshego vesa”, Funktsionalnyi analiz i ego prilozheniya, 5:1 (1971), 1–9 | Zbl

[3] Verma D.-N., “Structure of certain induced representations of complex semi-simple Lie algebras”, Bull. Amer. Math. Soc., 74 (1968), 160–166 | DOI | MR | Zbl

[4] Zhelobenko D. P., “Simmetriya v klasse elementarnykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Funktsionalnyi analiz i ego prilozheniya, 1,2 (1967), 15–38

[5] Zhelobenko D. P., “Analiz neprivodimosti v klasse elementarnykh predstavlenii poluprostoi kompleksnoi svyaznoi gruppy Li”, Izv. AN SSSR. Ser. matem., 32 (1968), 108–133

[6] Zhelobenko D. P., “Operatsionnoe ischislenie na poluprostoi kompleksnoi gruppe Li”, Izv. AN SSSR. Ser. matem., 33 (1969), 931–973

[7] Zhelobenko D. P., “O garmonicheskom analize funktsii na poluprostykh gruppakh Li, II”, Izv. AN SSSR. Ser. matem., 33 (1969), 1255–1295 | MR | Zbl

[8] Zhelobenko D. P., Naimark M. A., “Opisanie vpolne neprivodimykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Izv. AN SSSR. Ser. matem., 34 (1970), 57–82 | MR

[9] Zhelobenko D. P., “Klassifikatsiya ekstremalno neprivodimykh i normalno neprivodimykh predstavlenii poluprostoi kompleksnoi svyaznoi gruppy Li”, Izv. AN SSSR. Ser. matem, 35 (1972), 573–599

[10] Teoriya algebr Li. Topologiya grupp Li, Seminar “Sofus Li”, IL, M., 1962

[11] Fell I. M. G., “Non-unitary dual spaces of groups”, Acta Math., 114 (1966), 491–51 | MR

[12] Steinberg R., “Differential equations invariant under finite reflection groups”, Trans. Amer. Math. Soc., 112:3 (1964), 393–400 | DOI | MR