On a problem of Kaplanskii
Izvestiya. Mathematics, Tome 7 (1973) no. 3, pp. 479-496
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article we construct for any natural number $n$ an associative multilinear polynomial whose values on matrices of order $n$ are scalar matrices at least one of which is nonzero.
@article{IM2_1973_7_3_a0,
author = {Yu. P. Razmyslov},
title = {On a~problem of {Kaplanskii}},
journal = {Izvestiya. Mathematics},
pages = {479--496},
year = {1973},
volume = {7},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a0/}
}
Yu. P. Razmyslov. On a problem of Kaplanskii. Izvestiya. Mathematics, Tome 7 (1973) no. 3, pp. 479-496. http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a0/
[1] Kaplansky I., “Problems in the theory oi rings”, Nat. Acad. Sci. Nat. Res. Cons., 502 (1957), 1–3 | MR
[2] Latyshev V. N., Shmelkin A. L., “Ob odnoi probleme Kaplanskogo”, Algebra i logika, 8:4 (1969), 447–448 | Zbl
[3] Kaplansky I., “Problems in the theory of rings”, Amer. Math. Mon., 77:5 (1970), 445–454 | DOI | MR | Zbl
[4] Razmyslov Yu. P., “Ob engelevykh algebrakh Li”, Algebra i logika, 10:1 (1971), 33–44 | MR | Zbl