On a problem of Kaplanskii
Izvestiya. Mathematics, Tome 7 (1973) no. 3, pp. 479-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we construct for any natural number $n$ an associative multilinear polynomial whose values on matrices of order $n$ are scalar matrices at least one of which is nonzero.
@article{IM2_1973_7_3_a0,
     author = {Yu. P. Razmyslov},
     title = {On a~problem of {Kaplanskii}},
     journal = {Izvestiya. Mathematics},
     pages = {479--496},
     year = {1973},
     volume = {7},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a0/}
}
TY  - JOUR
AU  - Yu. P. Razmyslov
TI  - On a problem of Kaplanskii
JO  - Izvestiya. Mathematics
PY  - 1973
SP  - 479
EP  - 496
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a0/
LA  - en
ID  - IM2_1973_7_3_a0
ER  - 
%0 Journal Article
%A Yu. P. Razmyslov
%T On a problem of Kaplanskii
%J Izvestiya. Mathematics
%D 1973
%P 479-496
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a0/
%G en
%F IM2_1973_7_3_a0
Yu. P. Razmyslov. On a problem of Kaplanskii. Izvestiya. Mathematics, Tome 7 (1973) no. 3, pp. 479-496. http://geodesic.mathdoc.fr/item/IM2_1973_7_3_a0/

[1] Kaplansky I., “Problems in the theory oi rings”, Nat. Acad. Sci. Nat. Res. Cons., 502 (1957), 1–3 | MR

[2] Latyshev V. N., Shmelkin A. L., “Ob odnoi probleme Kaplanskogo”, Algebra i logika, 8:4 (1969), 447–448 | Zbl

[3] Kaplansky I., “Problems in the theory of rings”, Amer. Math. Mon., 77:5 (1970), 445–454 | DOI | MR | Zbl

[4] Razmyslov Yu. P., “Ob engelevykh algebrakh Li”, Algebra i logika, 10:1 (1971), 33–44 | MR | Zbl