On $(p,l)$-capacity, inbedding theorems, and the spectrum of a~selfadjoint elliptic operator
Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 357-387

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are found for continuity, compactness, and closability of imbedding operators of some function spaces into the space $L_p$. These results (for $p=2$) give criteria for positive definiteness and discreteness of the spectrum of the Dirichlet problem for a selfadjoint elliptic operator of arbitrary order. Some integral inequalities are considered for differentiable functions on a cube.
@article{IM2_1973_7_2_a7,
     author = {V. G. Maz'ya},
     title = {On $(p,l)$-capacity, inbedding theorems, and the spectrum of a~selfadjoint elliptic operator},
     journal = {Izvestiya. Mathematics },
     pages = {357--387},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a7/}
}
TY  - JOUR
AU  - V. G. Maz'ya
TI  - On $(p,l)$-capacity, inbedding theorems, and the spectrum of a~selfadjoint elliptic operator
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 357
EP  - 387
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a7/
LA  - en
ID  - IM2_1973_7_2_a7
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%T On $(p,l)$-capacity, inbedding theorems, and the spectrum of a~selfadjoint elliptic operator
%J Izvestiya. Mathematics 
%D 1973
%P 357-387
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a7/
%G en
%F IM2_1973_7_2_a7
V. G. Maz'ya. On $(p,l)$-capacity, inbedding theorems, and the spectrum of a~selfadjoint elliptic operator. Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 357-387. http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a7/