On an extremal problem for polynomials in~$n$ variables
Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 345-356

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to an examination of the following extremal problem: find the quantity $$ C_{k,n}(\lambda,B)=\sup_{|\omega|\ge\lambda}\sup_{P\in\mathscr P_{k,n}(\omega)}\|P\|_{C(B)}, $$ where $B$ is an $n$-dimensional sphere and $\mathscr P_{k,n}(\omega)$ is the totality of polynomials $P$ of degree $k$ in $n$ variables for which $\|P\|_{C(\omega)}\le1$. Here $\omega$ is a measurable set from $B$ and the first sup is taken over all measurable $\omega\subset B$ having measure $|\omega|\ge\lambda$. The exact order of growth of $C_{k,n}(\lambda, B)$ which respect to $\lambda$ as $\lambda\to0$ is found in this article. Various applications of the results are examined as well.
@article{IM2_1973_7_2_a6,
     author = {Yu. A. Brudnyi and M. I. Ganzburg},
     title = {On an extremal problem for polynomials in~$n$ variables},
     journal = {Izvestiya. Mathematics },
     pages = {345--356},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a6/}
}
TY  - JOUR
AU  - Yu. A. Brudnyi
AU  - M. I. Ganzburg
TI  - On an extremal problem for polynomials in~$n$ variables
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 345
EP  - 356
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a6/
LA  - en
ID  - IM2_1973_7_2_a6
ER  - 
%0 Journal Article
%A Yu. A. Brudnyi
%A M. I. Ganzburg
%T On an extremal problem for polynomials in~$n$ variables
%J Izvestiya. Mathematics 
%D 1973
%P 345-356
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a6/
%G en
%F IM2_1973_7_2_a6
Yu. A. Brudnyi; M. I. Ganzburg. On an extremal problem for polynomials in~$n$ variables. Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 345-356. http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a6/