On relative homological dimension of group algebras of locally compact groups
Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 307-317

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a noncompact, locally compact group with an invariant mean, $L_1(G)$ its group algebra, and $I$ the ideal of $L_1(G)$ formed by those functions whose Haar integral is zero. In this paper it is shown that the (relative) homological dimension of the Banach $L_1(G)$-module $L_1(G)/I$ is infinite. By the same token the (relative) global dimension of the Banach algebra $L_1(G)$ is also infinite. This result is then applied to the study of cohomology groups of a locally compact group with coefficients in Banach $G$-modules.
@article{IM2_1973_7_2_a3,
     author = {M. V. Sheinberg},
     title = {On relative homological dimension of group algebras of locally compact groups},
     journal = {Izvestiya. Mathematics },
     pages = {307--317},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a3/}
}
TY  - JOUR
AU  - M. V. Sheinberg
TI  - On relative homological dimension of group algebras of locally compact groups
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 307
EP  - 317
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a3/
LA  - en
ID  - IM2_1973_7_2_a3
ER  - 
%0 Journal Article
%A M. V. Sheinberg
%T On relative homological dimension of group algebras of locally compact groups
%J Izvestiya. Mathematics 
%D 1973
%P 307-317
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a3/
%G en
%F IM2_1973_7_2_a3
M. V. Sheinberg. On relative homological dimension of group algebras of locally compact groups. Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 307-317. http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a3/